5 Matching Results

Search Results

Advanced search parameters have been applied.

Industrial Assessment Center Program

Description: The work described in this report was performed under the direction of the Industrial Assessment Center (IAC) at University of Texas at Arlington. The IAC at The University of Texas at Arlington is managed by Rutgers University under agreement with the United States Department of Energy Office of Industrial Technology, which financially supports the program. The objective of the IAC is to identify, evaluate, and recommend, through analysis of an industrial plant’s operations, opportunities to conserve energy and prevent pollution, thereby reducing the associated costs. IAC team members visit and survey the plant. Based upon observations made in the plant, preventive/corrective actions are recommended. At all times we try to offer specific and quantitative recommendations of cost savings, energy conservation, and pollution prevention to the plants we serve.
Date: November 30, 2007
Creator: Agonafer, Dr. Dereje
Partner: UNT Libraries Government Documents Department

Doping Cu{sub 2}O in Electrolyte Solution: Dopant Incorporation, Atomic Structures and Electrical Properties

Description: We have pursued a number of research activities between April 2010 and April 2011:  A detailed study on n-type doping in Cu2O by Br;  An analysis of natural resource limitations to terawatt-scale solar cells;  Attempt to achieve a 1.4-eV direct band gap in Ni sulfides (NiSx);  First-principles studies of doping in Cu2O and electronic structures of NiSx.
Date: November 24, 2013
Creator: Tao, Meng & Zhang, Qiming
Partner: UNT Libraries Government Documents Department

Investigations of the electronic structure and superconductivity in newly predicted metallic crystalline carbon

Description: This project investigated the electronic, structural, and optical properties of fullerene-based materials under high pressure/temperature conditions. It involved: (1) Raman spectroscopy and X-ray diffraction measurements on C-60 fullerenes compressed in diamond anvil cell, (2) synthesis of C-60 thin films and determination of their electronic structure by photoemission spectroscopy, and (3) investigations of the adsorption of water molecules into single-walled carbon nanotubes.
Date: August 16, 2007
Creator: Sharma, Suresh C
Partner: UNT Libraries Government Documents Department

Final Report

Description: The objective of this DOE SAI project is to demonstrate the feasibility of electrodeposited and solution-doped transparent conducting oxides (TCOs) such as zinc oxide with resistivity in the mid-10{sup -4} {Omega}-cm range. The target application is an 'on-top' TCO which can be deposited on semiconductors in thin-film and future solar cells including amorphous silicon, copper indium gallium selenide and emerging solar cells. There is no solution-prepared on-top TCO currently used in commercial solar cells. This project, if successful, will fill this gap. Our technical objectives include electrodeposited TCOs with (1) resistivity in the mid-10{sup -4} {Omega}-cm range, (2) post-deposition annealing below 300 C and (3) no-vacuum processing or low-vacuum processing. All the three research objectives listed above have been accomplished in the 14-month period from July 1, 2009 through September 30, 2010. The most noticeable accomplishments of this project are (1) identification of a terawatt-scale dopant for zinc oxide, i.e. yttrium, whose known reserve is enough for 60 peak terawatts of thin-film solar cells; (2) demonstration of a record-low resistivity, 6.3 x 10{sup -5} {Omega}-cm, in solution-deposited zinc oxide with an abundant dopant; and (3) the record-low resistivity was accomplished with a maximum process temperature of 300 C and without vacuum annealing. Industrial applications of the new yttrium-doped zinc oxide are being pursued, including (1) green deposition of yttrium-doped zinc oxide to reduce water consumption during deposition and (2) search for an industrial partner to develop an electrochemical tool for large-area uniform deposition of yttrium-doped zinc oxide.
Date: December 22, 2010
Creator: Tao, Dr. Meng
Partner: UNT Libraries Government Documents Department

Research in experimental elementary particle physics. A proposal to the U.S. Department of Energy

Description: We report on the activities of the High Energy Physics Group at the University of Texas at Arlington for the period 1994-95. We propose the continuation of the research program for 1996-98 with strong participation in the detector upgrade and physics analysis work for the D0 Experiment at Fermilab, prototyping and pre-production studies for the muon and calorimeter systems for the ATLAS Experiment at CERN, and detector development and simulation studies for the PP2PP Experiment at Brookhaven.
Date: April 13, 1995
Creator: White, Andrew P.; De, Kaushik; Draper, Paul A. & Stephens, Ransom
Partner: UNT Libraries Government Documents Department