35 Matching Results

Search Results

Advanced search parameters have been applied.

DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

Description: The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly unburned carbon in fly ash. Unburned carbon is nowadays regarded as a waste product and its fate is mainly disposal, due to the present lack of efficient routes for its utilization. However, unburned carbon is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, this report evaluates and compares several routes for the production of activated carbons from unburned carbon in fly ash, including physical and chemical activation methods. During the present reporting period (June 30, 2001-June 29, 2002), additional characterization work was conducted under Task 1 ''Procurement and characterization of CCBPs''. The suite collected includes samples from pulverized utility boilers, a utility cyclone unit equipped with a beneficiation technology, a stoker, and a fluidized bed combustor. Proximate, ultimate, and petrographic analyses of the fly ash samples previously collected were measured. Furthermore, the surface areas of the samples assembled were characterized by N{sub 2} adsorption isotherms at 77 K. The proximate analyses showed that all the samples had very low moisture contents (0.17 to 3.39 wt%), while volatile matter contents of the samples varied between 0.45 to 24.8 wt%. The ultimate analyses of all the fly ash samples showed that they contained primarily carbon, while the hydrogen contents of all the samples were very low. In addition, during the current reporting period, also Task 2 ''Development of activated carbons'' and Task 3 ''Characterization of activated carbons'' were continued.
Date: September 27, 2002
Creator: Schobert, Prof. Harold H.; Maroto-Valer, Dr. M. Mercedes & Lu, Ms. Zhe
Partner: UNT Libraries Government Documents Department

IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

Description: The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.
Date: June 1, 2003
Creator: Chapman, Elana M.; Boehman, Andre; Wain, Kimberly; Lloyd, Wallis; Perez, Joseph M.; Stiver, Donald et al.
Partner: UNT Libraries Government Documents Department

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, work focused on performing the design of the conceptual fluidized bed system and determining the system economics.
Date: January 18, 2001
Creator: Miller, Bruce G.; Miller, Sharon Falcone; Cooper, Robert; Donovan, Douglas; Gaudlip, John; Lapinsky, Matthew et al.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eighth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) issuing subcontracts, (2) SWC membership class expansion, (3) planning SWC technology transfer meetings, and (4) extending selected 2001 project periods of performance. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.
Date: September 27, 2002
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

Description: The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.
Date: April 1, 2003
Creator: Chapman, Elana M.; Bhide, Shirish; Stefanik, Jennifer; Boehman, Andre L. & Klinikowski, David
Partner: UNT Libraries Government Documents Department

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

Description: The Pennsylvania State University, utilizing funds furnished by the U.S. Department of Energy's Biomass Power Program, investigated the installation of a state-of-the-art circulating fluidized bed boiler at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring biofuels and coal-based feedstocks. The study was performed using a team that included personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Foster Wheeler Energy Corporation; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. The activities included assessing potential feedstocks at the University Park campus and surrounding region with an emphasis on biomass materials, collecting and analyzing potential feedstocks, assessing agglomeration, deposition, and corrosion tendencies, identifying the optimum location for the boiler system through an internal site selection process, performing a three circulating fluidized bed (CFB) boiler design and a 15-year boiler plant transition plan, determining the costs associated with installing the boiler system, developing a preliminary test program, determining the associated costs for the test program, and exploring potential emissions credits when using the biomass CFB boiler.
Date: March 26, 2003
Creator: Miller, Bruce G.; Miller, Sharon Falcone; Cooper, Robert; Gaudlip, John; Lapinsky, Matthew; McLaren, Rhett et al.
Partner: UNT Libraries Government Documents Department

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

Description: The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. ...
Date: April 1, 2003
Creator: Chapman, Elana M.; Bhide, Shirish; Stefanik, Jennifer; Glunt, Howard; Boehman, Andre L.; Homan, Allen et al.
Partner: UNT Libraries Government Documents Department

DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

Description: The increasing role of coal as a source of energy in the 21st century will demand environmental and cost-effective strategies for the use of coal combustion by-products (CCBPs), mainly fly ash containing unburned carbon. However, the carbonaceous residue in fly ash, unburned carbon (UC), is a potential precursor for the production of adsorbent carbons, since it has gone through a devolatilization process while in the combustor, and therefore, only requires to be activated. Accordingly, this research program focuses on the development of activated carbons from the unburned carbon present in fly ash. During the present reporting period (June 30, 1999--June 29, 2000), Task 1 ''Procurement and characterization of CCBPs'' was initiated and samples from various combustion systems were collected. The suite assembled thus far includes samples from pulverized utility boilers with low-NOx burners and Selective Non Catalytic Reduction system, and also from an utility cyclone unit. The characterization studies showed that the sample from the cyclone unit contained the highest carbon content (LOI of {approx} 80%), since this unit has been retrofitted with a technology to separate the unburned carbon from the fly ash. In contrast, the sample from the unit retrofitted with a Selective Non Catalytic Reduction system showed the lowest carbon content with LOI values around 2-4%. The samples from the utility boilers with low-NOx burners were collected from the hot-side hoppers and present carbon contents {approx} 50%. The BET (N{sub 2} 77K) surface areas of the samples investigated were between 30-40 m{sup 2}/g and the pore volume is mainly due to mesopores. In addition, during this reporting period, also Task 2 ''Development of activated carbons'' and Task 3 ''Characterization of activated carbons'' were initiated. The investigations showed that after steam activation at 850 C, the unburned carbon samples generated activated carbons with microporous structure and surface areas ...
Date: July 31, 2000
Creator: Schobert, Prof. Harold H.; Maroto-Valer, Dr. M. Mercedes & Lu, Ms. Zhe
Partner: UNT Libraries Government Documents Department

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

Description: The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the ...
Date: July 28, 2005
Creator: Macdonald, Digby; Marx, Brian; Soundararajan, Balaji & Smith, Morgan
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the tenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) release of the 2003 request-for-proposal (RFP), (2) planning the spring SWC meeting in Pearl River New York, and (3) tentatively plan the SWC 2003 fall technology transfer meetings. During this reporting period, the efforts were focused primarily on the organizing and hosting the fall technology transfer meetings. Simultaneously, administrative issues such as modifying the SWC Constitution and By-Laws and creating a block membership tier to promote further industrial involvement were areas of concentration. The SWC is poised to enter its third year with a growing, diversifying membership.
Date: May 10, 2004
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions

Description: Results were repeatedly obtained that were consistent with a hypothesis proposed at the beginning of this program, i.e., due to Metal-Support Interactions (MSI), unique active sites can be created in the metal-support interfacial region to enhance activity and improve selectivity in certain types of reactions, especially those involving the hydrogenation of carbonyl and unsaturated C=C bonds. Higher turnover frequencies (TOF-molecule/s/site) and increased selectivity for C=O bond versus C=C bond hydrogenation was established in the hydrogenation reactions of: acetone, crotonaldehyde, acetophenone, phenylethanol, acetylcyclohexane, benzaldehyde, benzyl alcohol, phenylacetaldehyde and citral over Pt/TiO{sub 2} MSI catalysts. Higher rates of hydrogenation benzene, toluene and xylene could be obtained over certain supported Pt and Pd catalysts. Au/TiO{sub 2} catalysts were developed that were active for CO hydrogenation at subambient temperatures. The influence of support and metal crystallite size were established for the adsorption of H{sub 2}, CO and O{sub 2} on families of Pt and Pd catalysts.
Date: May 30, 2003
Creator: Vannice, M. A.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the thirteenth quarterly technical progress report for the SWC. Key activities for this reporting period included: (1) hosting three fall technology transfer meetings in Wyoming, Texas, and Pennsylvania, (2) releasing the 2004 SWC request-for-proposal (RFP), and (3) initial planning of the SWC spring meeting in Golden Colorado for selecting the 2004 SWC projects. The Fall technology transfer meetings attracted 100+ attendees between the three workshops. The SWC membership which attended the Casper, Wyoming workshop was able to see several SWC-funded projects operating in the field at the Rocky Mountain Oilfield Testing Center. The SWC is nearing the end of its initial funding cycle. The Consortium has a solid membership foundation and a demonstrated ability to review and select projects that have relevancy to meet the needs of domestic stripper well operators.
Date: May 17, 2004
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the US Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the US petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the seventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) issuing subcontracts for the 2002 SWC projects, (2) SWC membership class expansion, and (3) planning SWC technology transfer meetings. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.
Date: September 25, 2002
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the fourteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing the SWC spring meeting in Golden Colorado, (2) planning of the upcoming SWC fall technology transfer meetings, and (3) recruit the SWC base membership.
Date: May 18, 2004
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the ninth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting two fall technology transfer meetings, (2) SWC membership class expansion, and (3) planning the SWC 2003 Spring meeting. In addition, a literature search that focuses on the use of lasers, microwaves, and acoustics for potential stripper well applications continued.
Date: April 8, 2003
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the eleventh quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) organizing and hosting the Spring SWC meeting in Pearl River, New York, (2) working with successful applicants and Penn State's Office of Sponsored Research to get subcontracts in place, and (3) planning three SWC technology transfer meetings to take place in the fall of 2003. During this reporting period, the efforts were focused primarily on the organizing and hosting the SWC Spring proposal meeting and organizing the fall technology transfer meetings.
Date: May 10, 2004
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

Description: As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility ...
Date: August 20, 2000
Creator: Boehman, Andre L.
Partner: UNT Libraries Government Documents Department

Irradiation Induced Precipitation and Dissolution of Intermetallics in Zr Alloys Studied Using Synchrotron Radiation

Description: The overall aim of this project is to investigate the irradiation induced precipitation of alloying elements and dissolution of second phase particles in Zr alloys using a combination of (1) synchrotron radiation examination of bulk samples using the Advanced Photon Source (APS) at Argonne National Laboratory and (2) in-situ irradiation of model alloys using the IVEM/Tandem Facility also located at Argonne
Date: September 21, 2004
Creator: Motta, Arthur T.
Partner: UNT Libraries Government Documents Department

Vibrational and Electronic Properties of Fullerene and Carbon-Based Clustors. Final Reports for period July 1, 1997 - June 30, 2001

Description: Lattice dynamics is of central importance for the mechanism of ferroelectricity. In particular, the soft mode behaviors are directly related to many of their ferroelectric and dielectric properties. In this project, we have carried out experimental studies of the vibrational spectra of SrTiO{sub 3} films grown by pulsed laser deposition using a metal-oxide bilayer structure. Raman scattering, with and without bias electric field, and Fourier-transform far-infrared ellipsometry were utilized. These results are compared with the low-frequency dielectric properties. We found that in the films the soft mode is harder compared to that in bulk crystals, in agreement with the Lyddane-Sachs-Teller (LST) formalism. We have studied electric field-induced Raman scattering in SrTiO{sub 3} thin films using an indium-tin oxide/SrTiO{sub 3}/SrRuO{sub 3} structure. The soft mode polarized along the field becomes Raman active. Experimental data for electric field-induced hardening of the soft modes and the tuning of the static dielectric constant are in agreement described by the LST formalism. The markedly different behavior of the soft modes in thin films from that in the bulk is explained by the existence of local polar regions. The study was extended to Ba{sub x}Sr{sub 1-x}TiO{sub 3} films with Ba contents x = 0.05, 0.1, 0.2 and 0.5. The temperature dependence of the soft mode frequency shows evidence of the ferroelectric phase transition in the films. Relative Raman intensity of hard phonon modes shows the ferroelectric phase transition occurs over a broad range of temperatures in thin films, which is different from bulk behavior. Comparison of temperature evolution of Raman spectra for films grown on SrTiO{sub 3} and LaAlO{sub 3} substrates shows the influence of strain on the temperature of ferroelectric phase transition.
Date: November 26, 2002
Creator: Xi, X.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the twelfth quarterly technical progress report for the SWC. Key activities for this reporting period focused on organizing and hosting three fall technology transfer meetings that will be held in Wyoming, Texas, and Pennsylvania. In addition, work has started on developing the 2004 SWC request-for-proposals which will be released during the next reporting period. During this reporting period, the efforts were focused primarily on the organizing the SWC fall technology transfer meetings.
Date: May 17, 2004
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences; Foster Wheeler Energy Services, Inc.; Parsons Energy and Chemicals Group, Inc.; and Cofiring Alternatives. During this reporting period, the final technical design and cost estimate were submitted to Penn State by Foster Wheeler. In addition, Penn State initiated the internal site selection process to finalize the site for the boiler plant.
Date: October 14, 2002
Creator: Miller, Bruce G.; Miller, Sharon Falcone; Cooper, Robert; Donovan, Douglas; Gaudlip, John; Lapinsky, Matthew et al.
Partner: UNT Libraries Government Documents Department

ESTABLISHMENT OF AN INDUSTRY-DRIVEN CONSORTIUM FOCUSED ON IMPROVING THE PRODUCTION PERFORMANCE OF DOMESTIC STRIPPER WELLS

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), has established a national industry-driven Stripper Well Consortium (SWC) that is focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the second topical report. The SWC has grown and diversified its membership during its first 24 months of existence. The Consortium is now focused on building strategic alliances with additional industrial, state, and federal entities to expand further the SWC membership base and transfer technologies as they are developed. In addition, the Consortium has successfully worked to attract state support to co-fund SWC projects. Penn State has entered a co-funding arrangement with the New York State Energy Development Authority (NYSERDA) which has provided $200,000 over the last two years to co-fund stripper well production-orientated projects that have relevance to New York state producers. During this reporting period, the Executive Council approved co-funding for 14 projects that have a total project value of $2,116,897. Since its inception, the SWC has approved cofunding for 27 projects that have a total project value of $3,632,109.84. The SWC has provided $2,242,701 in co-funding for these projects and programmatically maintains a cost share of 39%.
Date: September 30, 2002
Creator: Morrison, Joel L.
Partner: UNT Libraries Government Documents Department

FEASIBILITY ANALYSIS FOR INSTALLING A CIRCULATING FLUIDIZED BED BOILER FOR COFIRING MULTIPLE BIOFUELS AND OTHER WASTES WITH COAL AT PENN STATE UNIVERSITY

Description: The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory is performing a feasibility analysis on installing a state-of-the-art circulating fluidized bed boiler and ceramic filter emission control device at Penn State's University Park campus for cofiring multiple biofuels and other wastes with coal, and developing a test program to evaluate cofiring multiple biofuels and coal-based feedstocks. The objective of the project is being accomplished using a team that includes personnel from Penn State's Energy Institute, Office of Physical Plant, and College of Agricultural Sciences, Foster Wheeler Energy Services, Inc., Parsons Energy and Chemicals Group, Inc., and Cofiring Alternatives. During this reporting period, work focused on completing the biofuel characterization and the design of the conceptual fluidized bed system.
Date: July 13, 2001
Creator: Miller, Bruce G.; Miller, Sharon Falcone; Cooper, Robert; Donovan, Douglas; Gaudlip, John; Lapinsky, Matthew et al.
Partner: UNT Libraries Government Documents Department

MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

Description: The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray micro-tomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in the presence ...
Date: April 20, 2002
Creator: Grader, A.S.; Elsworth, D.; Halleck, P.M.; Alvarad, F.; Yasuhara, H. & Alajmi, A.
Partner: UNT Libraries Government Documents Department