50 Matching Results

Search Results

Advanced search parameters have been applied.

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain Repository

Description: The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives set forward by the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Environmental Protection Agency (EPA). The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. As additional site and design information is generated, performance assessment analyses can be revised to become more representative of the expected conditions and remove some of the conservative assumptions necessitated by the incompleteness of site and design data. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993. These analyses have been documented in Barnard, Eslinger, Wilson and Andrews.
Date: November 1, 1995
Partner: UNT Libraries Government Documents Department

The vegetation of Yucca Mountain: Description and ecology

Description: Vegetation at Yucca Mountain, Nevada, was monitored over a six-year period, from 1989 through 1994. Yucca Mountain is located at the northern limit of the Mojave Desert and is the only location being studied as a potential repository for high-level nuclear waste. Site characterization consists of a series of multidisciplinary, scientific investigations designed to provide detailed information necessary to assess the suitability of the Yucca Mountain Site as a repository. This vegetation description establishes a baseline for determining the ecological impact of site characterization activities; it porvides input for site characterization research and modeling; and it clarifies vegetation community dynamics and relationships to the physical environment. A companion study will describe the impact of site characterization of vegetation. Cover, density, production, and species composition of vascular plants were monitored at 48 Ecological Study Plots (ESPs) stratified in four vegetation associations. Precipitation, soil moisture, and maximum and minimum temperatures also were measured at each study plot.
Date: March 29, 1996
Partner: UNT Libraries Government Documents Department

Total system performance assessment - 1995: An evaluation of the potential Yucca Mountain repository

Description: The U.S. Department of Energy (DOE) is currently investigating the feasibility of permanently disposing the nation`s commercial high-level radioactive wastes (in the form of spent fuel from the over 100 electric power-generating nuclear reactors across the U.S.) and a portion of the defense high-level radioactive wastes (currently stored at federal facilities around the country) in the unsaturated tuffaceous rocks at Yucca Mountain, Nevada. Quantitative predictions based on the most current understanding of the processes and parameters potentially affecting the long-term behavior of the disposal system are used to assess the ability of the site and its associated engineered designs to meet regulatory objectives of the US NRC and the US EPA. The evaluation of the ability of the overall system to meet the performance objectives specified in the applicable regulatory standards has been termed total system performance assessment (TSPA). Total system performance assessments require the explicit quantification of the relevant processes and process interactions. In addition assessments are useful to help define the most significant processes, the information gaps and uncertainties and therefore the additional information required for more robust and defensible assessment of the overall performance. The aim of any total system performance assessment is to be as complete and reasonably conservative as possible and to assure that the descriptions of the predictive models and parameters are sufficient to ascertain their accuracy. Total system performance assessments evolve with time. Previous iterations of total system performance assessment of the Yucca Mountain site and associated engineered barriers have been conducted in 1991 and 1993.
Date: November 1, 1995
Creator: Atkins, J. E.; Lee, J. H.; Lingineni, S.; Mishra, S.; McNeish, J. A.; Sassani, D. C. et al.
Partner: UNT Libraries Government Documents Department

Site characterization plan thermal goals reevaluation

Description: The Site Characterization Plan (SCP) (DOE, 1988) attempted to define surrogate criteria that could be used to establish potential repository performance. These criteria or SCP thermal goals were developed from knowledge existing at the time and, as a reference case, emphasized performance for waste emplacement in a vertical borehole. Since that time, new knowledge has become available and some additional analyses of thermal loading have been performed. Additionally, other emplacement modes such as in-drift emplacement are being considered to accommodate larger waste packages. New concepts such as ``extended hot`` are also being considered as possible methods to achieve improved waste isolation. Thus it became clear that the thermal goals established in the SCP should be reevaluated. A Working Group was formed to reassess the SCP thermal goals to determine whether each goal was still valid, if there were goals that needed to be added, and what if any effort was needed to reduce the uncertainty associated with a particular goal. The objectives of the effort were to: (1) provide thermal goals that would support the FY 1993 Thermal Loading Systems Study; (2) help focus the planned testing and analysis efforts; and (3) acquire data that potentially could be used to initiate a change to the project technical baseline. Sixteen thermal goals were evaluated; fifteen were from various sections of the SCP; one goal was added, and another was split into two to include in-drift emplacement. The group`s findings and recommendations are presented.
Date: September 8, 1993
Partner: UNT Libraries Government Documents Department

Status of thermal loading evaluations for a potential repository

Description: The effect that thermal loading has on the natural and engineered systems needs to be understood and demonstrated with reasonable assurance in the Viability Assessment and the License Application process for a potential underground high level waste repository at Yucca Mountain. Thermal loading can be defined in a number of ways but it basically is the amount of decay heat from the spent nuclear fuel produced per unit area and is related to the emplacement density of fuel. This paper provides an overview of the status of the development of the technical basis for a thermal loading decision for a potential repository at Yucca Mountain and emphasizes recent analyses conducted.
Date: January 29, 1996
Creator: Saterlie, S. F.
Partner: UNT Libraries Government Documents Department

Thermal loading study for FY 1995

Description: This report provides the results of sensitivity analyses designed to assist the test planners in focusing their in-situ measurements on parameters that appear to be important to waste isolation. Additionally, the study provides a preliminary assessment of the feasibility of certain thermal management options. A decision on thermal loading is a critical part of the scientific and engineering basis for evaluating regulatory compliance of the potential repository for waste isolation. To show, with reasonable assurance, that the natural and engineered barriers will perform adequately under expected repository conditions (thermally perturbed) will require an integrated approach based on thermal testing (laboratory, and in-situ), natural analog observations, and analytic modeling. The Office of Civilian Radioactive Waste Management needed input to assist in the planning of the thermal testing program. Additionally, designers required information on the viability of various thermal management concepts. An approximately 18-month Thermal Loading Study was conducted from March, 1994 until September 30, 1995 to address these issues. This report documents the findings of that study. 89 refs., 71 figs., 33 tabs.
Date: January 31, 1996
Partner: UNT Libraries Government Documents Department

Isotopic validation for PWR actinide-only burnup credit using Mihama-3 data

Description: This report augments a US Department of Energy Topical Report on Actinide-Only Burnup Credit for PWR Spent Nuclear Fuel Packages submitted to the Nuclear Regulatory Commission (NRC). The purpose of the topical report was to obtain NRC approval on a generic burnup credit methodology. A major part of the methodology is the validation of the neutronics model used for designing the criticality control system. The validation methodology presented in the topical report established isotopic correction factors based on 19 isotopic samples. This report presents additional data points for isotopic validation. Measured and calculated isotopic quantities for nine samples from three spent fuel assemblies discharged from the Japanese Mihama-3 reactor are tabulated. 5 refs., 2 tabs.
Date: October 1, 1996
Creator: Rahimi, M. & Lancaster, D.
Partner: UNT Libraries Government Documents Department

Mined Geologic Disposal System Concept of Operations

Description: A Concept of Operations has been developed for the disposal of high-level radioactive waste in the potential geologic repository at Yucca Mountain. The Concept of Operations has been developed to document a cormion understanding of how the repository is to be operated. It is based on the repository architecture identified in the Initial Summary Report for Repository/Waste Package Advanced Conceptual Design and describes the operation of the repository from the initial receipt of waste through repository closure. Also described are operations for waste retrieval.
Date: June 8, 1995
Creator: Heidt, R. M.
Partner: UNT Libraries Government Documents Department

Overview of the current CRWMS repository design

Description: This paper summarizes the current design for a potential geologic repository for spent fuels and high-level wastes at Yucca Mountain, Nevada. The objective of the paper is to present the key design features of the Mined Geologic Disposal System (MGDS) surface facilities and MGDS subsurface facilities. The paper describes the following: surface layout; waste handling operations design; subsurface design; and the underground transport and emplacement design. A more detailed presentation of key features is provided in the ``Reference design description for a geologic repository`` which is located on the YMP Homepage at www.ymp.gov.
Date: July 1, 1998
Creator: Daniel, R. B. & Teraoka, G. M.
Partner: UNT Libraries Government Documents Department

Thermal loading study for FY 1996. Volume 1

Description: The primary objective of this study was to provide recommendations for Mined Geologic Disposal System requirements affected by thermal loading that will provide sufficient definition to facilitate development of design concepts and support life cycle cost determinations. The study reevaluated and/or redefined selected thermal goals used for design and are currently contained in the requirements documents or the Controlled Design Assumption Document. The study provided recommendations as to what, if any, actions (such as edge loading and limiting of the heat variability between waste packages) are needed and must be accommodated in the design. Additionally, the study provided recommendations as to what alternative thermal loads should be maintained for continued flexibility. Section 1 provides the study objective, background, scope, and organization of the report. Section 2 documents the requirements and standards to include quality assurance (QA) requirements, any requirements used or evaluated, and the inputs and assumptions considered. Section 3 provides the analysis and recommendations for the thermal goals reevaluation. Section 4 discusses the evaluation of edge loading and provides conclusions. Section 5 provides the analyses done to establish recommendations as to what requirements need to be implemented to either limit or manage the amount of heat output variability that may occur. Section 6 discusses alternate thermal loadings; Section 7 provides the study conclusions and recommendations; Section 8 provides the references, standards, and regulations; and Section 9 contains the acronym list.
Date: November 8, 1996
Partner: UNT Libraries Government Documents Department

Thermal loading study for FY 1996. Volume 2

Description: The primary objective of this study was to provide recommendations for Mined Geologic Disposal System requirements affected by thermal loading that will provide sufficient definition to facilitate development of design concepts and support life cycle cost determinations. The study reevaluated and/or redefined selected thermal goals used for design and are currently contained in the requirements documents or the Controlled Design Assumption Document. The study provided recommendations as to what, if any, actions (such as edge loading and limiting of the heat variability between waste packages) are needed and must be accommodated in the design. Additionally, the study provided recommendations as to what alternative thermal loads should be maintained for continued flexibility. This report contains seven appendices: Technical basis for evaluation of thermal goals below the potential nuclear was repository at Yucca Mountain; Thermal-mechanical evaluation of the 200 C drift-wall temperature goal; Evaluation of ground stability and support; Coupled ventilation and hydrothermal evaluations; Heat flow and temperature calculations for continuously ventilated emplacement drifts; Thermal management using aging and/or waste package selection; and Waste stream evaluations.
Date: November 8, 1996
Partner: UNT Libraries Government Documents Department

High-level radioactive waste management in the United States. Background and status: 1996

Description: The US high-level radioactive waste disposal program is investigating a site at Yucca Mountain, Nevada, to determine whether or not it is a suitable location for the development of a deep mined geologic repository. At this time, the US program is investigating a single site, although in the past, the program involved successive screening and comparison of alternate locations. The United States civilian reactor programs do not reprocess spent fuel; the high-level waste repository will be designed for the emplacement or spent fuel and a limited amount of vitrified high-level wastes from previous reprocessing in the US. The legislation enabling the US program also contains provisions for a Monitored Retrievable Storage facility, which could provide temporary storage of spent fuel accepted for disposal, and improve the flexibility of the repository development schedule.
Date: December 31, 1996
Creator: Dyer, J. R. & Voegele, M. D.
Partner: UNT Libraries Government Documents Department

Interface management for the Mined Geologic Disposal System

Description: The purpose of this paper is to present the interface management process that is to be used for Mined Geologic Disposal System (MGDS) development. As part of the systems engineering and integration performed on the Yucca Mountain Project (YMP), interface management is critical in the development of the potential MGDS. The application of interface management on the YMP directly addresses integration between physical elements of the MGDS and the organizations responsible for their development.
Date: March 1, 1998
Creator: Ashlock, K. J.
Partner: UNT Libraries Government Documents Department

Interface management for the Mined Geologic Disposal System

Description: The Management and Operations (M and O) contractor for the Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM) program exists to support DOE in the successful development and operation of an integrated system to manage the nation`s spent nuclear fuel and high-level wastes. As part of the system engineering and integration performed on the Yucca Mountain Project (YMP), interface management is critical in the development of the Mined Geologic Disposal System (MGDS). The application of interface management on the YMP directly addresses integration between physical elements of the MGDS and the organizations responsible for their development. An initiative to utilize interface management and the interface control document development process for organizational interfaces is also being pursued to help ensure consistent use of information by multiple organizations.
Date: June 1, 1998
Creator: Ashlock, K. J. & Sellers, M. D.
Partner: UNT Libraries Government Documents Department

Performance confirmation data acquisition system

Description: As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided.
Date: December 31, 1997
Creator: McAffee, D. A. & Raczka, N. T.
Partner: UNT Libraries Government Documents Department

Reference design description for a geologic repository: Revision 01

Description: This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.
Date: September 1, 1997
Partner: UNT Libraries Government Documents Department

Regulatory perspective on NAS recommendations for Yucca Mountain standards

Description: This paper provides a regulatory perspective from the viewpoint of the potential licensee, the US Department of Energy (DOE), on the National Academy of Sciences (NAS) report on Yucca Mountain standards published in August 1995. The DOE agrees with some aspects of the NAS report; however, the DOE has serious concerns with the ability to implement some of the recommendations in a reasonable manner.
Date: February 1, 1996
Creator: Brocoum, S. J.; Nesbit, S. P.; Duguid, J. A.; Lugo, M. A. & Krishna, P. M.
Partner: UNT Libraries Government Documents Department

Yucca Mountain site characterization project: Site atlas 1997. Part 1

Description: The US Department of Energy (DOE) is conducting site characterization studies at Yucca Mountain, Nevada, to determine if the site is suitable for an underground repository for the permanent disposal of high-level radioactive waste. The Yucca Mountain Project (YMP) Site Atlas is a tool used to cartographically display some of the Geographic Information System (GIS) data in the form of thematic map products. Essentially, the Site Atlas is a compilation of map products that are designed to illustrate the location and extent of site characterization studies. Additionally, the Site Atlas provides maps showing project administrative boundaries and basemaps in the vicinity of the project. The data are current through September 1997. The Atlas is divided into two parts: Part 1 contains GIS maps and supporting characteristic data for geology; stratigraphy; tectonics; volcanism; hydrology; geochemistry; environmental issues; paleontology; repository design; YMP boreholes, trenches, pits, pavements, and exposures; basemap features; and surface-based testing activities, and Part 2 contains 1:6,000- and 1:12,000-scale orthophotography basemaps and orthophotography-based hypsography maps (topographic data). This data is shown at a 50% reduction. The maps and orthophotographs in this Site Atlas are provided to YMP participants as an informational source only and are not for making precise measurements. The Quality Assurance Requirements and Description statement on each map identifies the quality status of the thematic data presented. The Site Atlas is not a comprehensive guide; it does not include all scientific features or studies undertaken for the YMP. The features presented are a small subset of the total work being conducted for the project.
Date: December 31, 1997
Partner: UNT Libraries Government Documents Department

Benefits of actinide-only burnup credit for shutdown PWRs

Description: Owners of PWRs that are shutdown prior to resolution of interim storage or permanent disposal issues have to make difficult decisions on what to do with their spent fuel. Maine Yankee is currently evaluating multiple options for spent fuel storage. Their spent fuel pool has 1,434 assemblies. In order to evaluate the value to a utility of actinide-only burnup credit, analysis of the number of canisters required with and without burnup credit was made. In order to perform the analysis, loading curves were developed for the Holtec Hi-Star 100/MPC-32. The MPC-32 is hoped to be representative of future burnup credit designs from many vendors. The loading curves were generated using the actinide-only burnup credit currently under NRC review. The canister was analyzed for full loading (32 assemblies) and with partial loadings of 30 and 28 assemblies. If no burnup credit is used the maximum capacity was assumed to be 24 assemblies. this reduced capacity is due to the space required for flux traps which are needed to sufficiently reduce the canister reactivity for the fresh fuel assumption. Without burnup credit the 1,343 assemblies would require 60 canisters. If all the fuel could be loaded into the 32 assembly canisters only 45 canisters would be required. Although the actinide-only burnup credit approach is very conservative, the total number of canisters required is only 47 which is only two short of the minimum possible number of canisters. The utility is expected to buy the canister and the storage overpack. A reasonable cost estimate for the canister plus overpack is $500,000. Actinide-only burnup credit would save 13 canisters and overpacks which is a savings of about $6.5 million. This savings is somewhat reduced since burnup credit requires a verification measurement of burnup. The measurement costs for these assemblies can be estimated as about ...
Date: February 1, 1998
Creator: Lancaster, D.; Fuentes, E.; Kang, C. & Rivard, D.
Partner: UNT Libraries Government Documents Department

Repository seals requirement study

Description: The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.
Date: November 3, 1997
Partner: UNT Libraries Government Documents Department

Repository seals requirements study

Description: The Yucca Mountain Site Characterization Project, managed by the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) is conducting investigations to support the Viability Assessment and the License Application for a high-level nuclear waste repository at Yucca Mountain, Nevada. The sealing subsystem is part of the Yucca Mountain Waste Isolation System. The Yucca Mountain Site Characterization Project is currently evaluating the role of the sealing subsystem (shaft, ramp and exploratory borehole seals) in achieving the overall performance objectives for the Waste Isolation System. This report documents the results of those evaluations. This report presents the results of a repository sealing requirements study. Sealing is defined as the permanent closure of the shafts, ramps, and exploratory boreholes. Sealing includes those components that would reduce potential inflows above the repository, or that would divert flow near the repository horizon to allow vertical infiltration to below the repository. Sealing of such features as emplacement drifts was not done in this study because the current capability to calculate fracture flow into the drifts is not sufficiently mature. The objective of the study is to provide water or air flow performance based requirements for shafts, ramps, and exploratory boreholes located near the repository. Recommendations, as appropriate, are provided for developing plans, seals component testing, and other studies relating to sealing.
Date: November 3, 1997
Partner: UNT Libraries Government Documents Department

Repository surface design site layout analysis

Description: The purpose of this analysis is to establish the arrangement of the Yucca Mountain Repository surface facilities and features near the North Portal. The analysis updates and expands the North Portal area site layout concept presented in the ACD, including changes to reflect the resizing of the Waste Handling Building (WHB), Waste Treatment Building (WTB), Carrier Preparation Building (CPB), and site parking areas; the addition of the Carrier Washdown Buildings (CWBs); the elimination of the Cask Maintenance Facility (CMF); and the development of a concept for site grading and flood control. The analysis also establishes the layout of the surface features (e.g., roads and utilities) that connect all the repository surface areas (North Portal Operations Area, South Portal Development Operations Area, Emplacement Shaft Surface Operations Area, and Development Shaft Surface Operations Area) and locates an area for a potential lag storage facility. Details of South Portal and shaft layouts will be covered in separate design analyses. The objective of this analysis is to provide a suitable level of design for the Viability Assessment (VA). The analysis was revised to incorporate additional material developed since the issuance of Revision 01. This material includes safeguards and security input, utility system input (size and location of fire water tanks and pump houses, potable water and sanitary sewage rates, size of wastewater evaporation pond, size and location of the utility building, size of the bulk fuel storage tank, and size and location of other exterior process equipment), main electrical substation information, redundancy of water supply and storage for the fire support system, and additional information on the storm water retention pond.
Date: February 27, 1998
Creator: Montalvo, H. R.
Partner: UNT Libraries Government Documents Department

FY 93 Thermal Loading Systems Study Final Report: Volume 1. Revision 1

Description: The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 1 contains the Introduction; Performance requirements; Input and assumptions; Near-field thermal analysis; Far-field thermal analysis; Cost analysis; Other considerations; System analysis; Additional thermal analysis; and Conclusions and recommendations. 71 refs., 54 figs.
Date: August 29, 1994
Creator: Saterlie, S. F. & Thomson, B. H.
Partner: UNT Libraries Government Documents Department

FY 93 Thermal Loading Systems Study Final Report: Volume 2. Revision 1

Description: The ability to meet the overall performance requirements for the proposed Mined Geology Disposal System at Yucca Mountain, Nevada requires the two major subsystem (natural barriers and engineered barriers) to positively contribute to containment and radionuclide isolation. In addition to the postclosure performance the proposed repository must meet preclosure requirements of safety, retrievability, and operability. Cost and schedule were also considered. The thermal loading strategy chosen may significantly affect both the postclosure and preclosure performance of the proposed repository. Although the current Site Characterization Plan reference case is 57 kilowatts (kW)/acre, other thermal loading strategies (different areal mass loadings) have been proposed which possess both advantages and disadvantages. The objectives of the FY 1993 Thermal Loading Study were to (1) place bounds on the thermal loading which would establish the loading regime that is ``too hot`` and the loading regime that is ``too cold``, to (2) ``grade`` or evaluate the performance, as a function of thermal loading, of the repository to contain high level wastes against performance criteria and to (3) evaluate the performance of the various options with respect to cost, safety, and operability. Additionally, the effort was to (4) identify important uncertainties that need to be resolved by tests and/or analyses in order to complete a performance assessment on the effects of thermal loading. The FY 1993 Thermal Loading Study was conducted from December 1, 1992 to December 30, 1993 and this final report provides the findings of the study. Volume 2 consists of 10 appendices which contain the following: Waste Stream Analysis; Waste Package Design Inputs; Subsurface Design Inputs; Thermal-Hydrologic Model Inputs; Near-Field Calculations; Far-Field; Reliability of Electronics as a Function of Temperature; Cost Analysis Details; Geochemistry; and Areas of Uncertainty in Thermal Loading.
Date: August 29, 1994
Partner: UNT Libraries Government Documents Department