47 Matching Results

Search Results

Advanced search parameters have been applied.

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

Description: The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.
Date: September 30, 2002
Creator: Kovscek, Anthony R. & Castanier, Louis M.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: This report outlines progress in the first quarter of the extension of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents experimental results that demonstrate combined scaling effects of viscous, capillary, and gravity crossflow mechanisms that apply to the situations in which streamline models are used. We designed and ran a series of experiments to investigate combined effects of capillary, viscous, and gravity forces on displacement efficiency in layered systems. Analog liquids (isooctane, isopropanol, and water) were employed to control scaling parameters by changing interfacial tension (IFT), flow rate, and density difference. The porous medium was a two-dimensional (2-D) 2-layered glass bead model with a permeability ratio of about 1:4. In order to analyze the combined effect of only capillary and viscous forces, gravity effects were eliminated by changing the orientation of the glass bead model. We employed a commercial simulator, Eclipse100 to calculate displacement behavior for comparison with the experimental data. Experimental results with minimized gravity effects show that the IFT and flow rate determine how capillary and viscous forces affect behavior of displacement. The limiting behavior for scaling groups for two-phase displacement was verified by experimental results. Analysis of the 2-D images indicates that displacements having a capillary-viscous equilibrium give the best sweep efficiency. Experimental results with gravity effects, but with low IFT fluid systems show that slow displacements produce larger area affected by crossflow. This, in turn, enhances sweep efficiency. The simulation results represent the experimental data well, except for the situations where capillary forces dominate the displacement.
Date: September 30, 2003
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

Description: As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.
Date: October 1, 2003
Creator: Mavko, Gary
Partner: UNT Libraries Government Documents Department

A STREAMLINE APPROACH FOR HISTORY-MATCHING PRODUCTION DATA

Description: This study proposes and develops a streamline approach for inferring field-scale effective permeability distributions based on dynamic production data including producer water-cut curve, well pressures, and rates. The streamline-based inverse approach simplifies the history-matching process significantly. The basic idea is to relate the water-cut curve at a producer to the water breakthrough of individual streamlines. By adjusting the effective permeability along streamlines, the breakthrough time of each streamline is found that reproduces the reference producer fractional-flow curve. Then the permeability modification along each streamline is mapped onto cells of the simulation grid. Modifying effective permeability at the streamline level greatly reduces the size of the inverse problem compared to modifications at the grid-block level. The approach outlined here is relatively direct and rapid. Limitations include that the forward flow problem must be solvable with streamlines, streamline locations do not evolve radically during displacement, no new wells are included, and relatively noise-free production data is available. It works well for reservoirs where heterogeneity determines flow patterns. Example cases illustrate computational efficiency, generality, and robustness of the proposed procedure. Advantages and limitations of this work, and the scope of future study, are also discussed.
Date: June 1, 2001
Creator: Wang, Yuandong & Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: This report outlines progress in the third 3 quarter of the first year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs.'' A simple theoretical formulation of vertical flow with capillary/gravity equilibrium is described. Also reported are results of experimental measurements for the same systems. The results reported indicate that displacement behavior is strongly affected by the interfacial tension of phases that form on the tie line that extends through the initial oil composition.
Date: June 30, 2001
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

EXPERIMENTAL INVESTIGATION AND HIGH RESOLUTION SIMULATOR OF IN-SITU COMBUSTION PROCESSES

Description: Accurate simulation of in-situ combustion processes is computationally very challenging because the spatial and temporal scales over which the combustion process takes place are very small. In this third quarterly report of our DoE funded research, we continue the discussion of the design of a new simulation tool based on an efficient Cartesian Adaptive Mesh Refinement technique that allows much higher grid densities to be used near typical fronts than current simulators. Also, we discuss the possibility of using Strang splitting for handling the large disparity in time-scales between the kinetics and transport in the in-situ combustion process. On the experimental side, we show results of experiments with our scanning electron microscope (SEM) to investigate the sand-clay-salt mixtures that are used for combustion in which we focus on grain sizes, shapes, orientations, characteristic inter-structures, and element analysis. SEM is shown to be a very effective tool in studying these mixtures.
Date: October 1, 2004
Creator: Gerritsen, Margot & Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: This report outlines progress in the first quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. In this report we present an application of compositional streamline simulation in modeling enhanced condensate recovery via gas injection. These processes are inherently compositional and detailed compositional fluid descriptions must be use to represent the flow behavior accurately. Compositional streamline simulation results are compared to those of conventional finite-difference (FD) simulation for evaluation of gas injection schemes in condensate reservoirs. We present and compare streamline and FD results for two-dimensional (2D) and three-dimensional (3D) examples, to show that the compositional streamline method is a way to obtain efficiently estimates of reasonable accuracy for condensate recovery by gas injection.
Date: December 31, 2002
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

Getting the Word Out on the Human Genome Project: A Course for Physicians

Description: Our project, ''Getting the Word Out on the Human Genome Project: A Course for Physicians,'' presented educational goals to convey the power and promise of the Human Genome Program to a variety of professional, educational, and public audiences. Our initial goal was to provide practicing physicians with a comprehensive multimedia tool to update their skills in the genomic era. We therefore created the multimedia courseware, ''The New Genetics: Courseware for Physicians. Molecular Concepts, Applications, and Ramifications.'' However, as the project moved forward, several unanticipated audiences found the courseware to be useful for instruction and for self-education, so an additional edition of the courseware ''The New Genetics: Medicine and the Human Genome. Molecular Concepts, Applications, and Ramifications'' was published simultaneously with the physician version. At the time that both versions of the courseware were being completed, Stanford's Office of Technology Licensing opted not to commercialize the courseware and offered a license-back agreement if the authors founded a commercial business. The authors thus became closely involved in marketing and sales, and several thousand copies of the courseware have been sold. Surprisingly, the non-physician version has turned out to be more in demand, and this has led us in several new directions, most of which involve undergraduate education. These are discussed in detail in the Report.
Date: September 29, 2004
Creator: Tobin, Sara L.
Partner: UNT Libraries Government Documents Department

Immobilization of Radionuclides in the Hanford Vadose Zone by Incorporation in Solid Phases

Description: The Department of Energy's Hanford Nuclear Site located in Washington State has accumulated over 2 million curies of radioactive waste from activities related to the production of plutonium (Ahearne, 1997). Sixty-seven of the single-shelled tanks located at the site are thought to have leaked, allowing between 2 and 4 million liters of waste fluids into the underlying vadose zone. The chemical processes employed at the Hanford Site to extract plutonium, as well as the need to minimize corrosion of the high-carbon steel storage tanks, resulted in uncharacterized hyperalkaline waste streams rich in radionuclides as well as other species including significant amounts of sodium and aluminum.
Date: January 24, 2005
Creator: Gordon E. Brown, Jr.; Catalano, Jeffrey G.; Warner, Jeffrey A.; Shaw, Samual & Grolimund, Daniel
Partner: UNT Libraries Government Documents Department

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

Description: This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.
Date: April 1, 2003
Creator: Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

Description: This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.
Date: March 1, 2004
Creator: Kovscek, Anthony R. & Castanier, Louis M.
Partner: UNT Libraries Government Documents Department

EXPERIMENTAL INVESTIGATION AND HIGH RESOLUTION SIMULATOR OF IN-SITU COMBUSTION PROCESSES

Description: Accurate simulation of in-situ combustion processes is computationally very challenging because the spatial and temporal scales over which the combustion process takes place are very small. In this third quarterly report of our DoE funded research, we continue the discussion of the design of a new simulation tool based on an efficient Cartesian Adaptive Mesh Refinement technique that allows much higher grid densities to be used near typical fronts than current simulators. Also, we show preliminary results for the one-dimensional in-situ combustion simulator, which will serve as the foundation for the development of a three-dimensional simulator that can handle realistic permeability heterogeneity. On the experimental side, the combustion kinetic apparatus and the combustion tube are now fully operational, and a series of successful combustion tube runs were performed that clearly showed additives allow combustion of poorly reactive oils. We have also started scanning electron microscope (SEM) analysis to investigate the sand-clay-salt mixtures that are used for combustion in which we focus on grain sizes, shapes, orientations, characteristic inter-structures, and element analysis.
Date: July 1, 2004
Creator: Gerritsen, Margot & Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: This report outlines progress in the second quarter of the third year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. This report presents results of an investigation of the effects of variation in interfacial tension (IFT) on three-phase relative permeability. We report experimental results that demonstrate the effect of low IFT between two of three phases on the three-phase relative permeabilities. In order to create three-phase systems, in which IFT can be controlled systematically, we employed analog liquids composing of hexadecane, n-butanol, isopropanol, and water. Phase composition, phase density and viscosity, and IFT of three-phase system were measured and are reported here. We present three-phase relative permeabilities determined from recovery and pressure drop data using the Johnson-Bossler-Naumann (JBN) method. The phase saturations were obtained from recovery data by the Welge method. The experimental results indicate that the wetting phase relative permeability was not affected by IFT variation whereas the other two-phase relative permeabilities were clearly affected. As IFT decreases the ''oil'' and ''gas'' phases become more mobile at the same phase saturations.
Date: March 31, 2003
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

EXPERIMENTAL INVESTIGATION AND HIGH RESOLUTION SIMULATOR OF IN-SITU COMBUSTION PROCESSES

Description: Accurate simulation of in-situ combustion processes is computationally very challenging because the spatial and temporal scales over which the combustion process takes place are very small. In this fifth quarterly report of our DoE funded research, we continue the discussion of the design of a new simulation tool based on an efficient Cartesian Adaptive Mesh Refinement technique that allows much higher grid densities to be used near typical fronts than current simulators. We have now developed an appropriate upscaling technique for our grids, based on the local-global upscaling approach. We show preliminary results on two-dimensional test cases. On the experimental side, we continued experiments to measure the rates and kinetics of combustion in the presence and absence of metallic additives. In this quarter, we developed a better understanding of the cation replacing power of the various additives that affect combustion performance positively, and obtained a preliminary reactivity series. We also resumed our experimental investigation into the cyclic solvent-combustion process using crude oil from the Hamaca Region of Venezuela. Various measurements were made including oxygen consumption as a function of temperature. Preliminary results show that the temperatures for the onset of combustion are a function of the solvent injected.
Date: February 1, 2005
Creator: Gerritsen, Margot & Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

Session 4: Geothermal Reservoir Definition

Description: The study of geothermal reservoir behavior is presently in a state of change brought about by the discovery that reservoir heterogeneity--fractures in particular--is responsible for large scale effects during production. On the other hand, some parts of a reservoir, or some portions of its behavior. may be unaffected by fractures and behave, instead, as if the reservoir were a homogeneous porous medium. Drilling has for many years been guided by geologists prospecting for fractures (which have been recognized as the source of production), but until recently reservoir engineers have not studied the behavior of fractured systems under production. In the last three years research efforts, funded by the Department of Energy and others, have made significant progress in the study of fractures. The investigations into simulation of fracture flow, tracer analysis of fractured systems, and well test analysis of double porosity reservoirs are all advancing. However, presently we are at something of a conceptual impasse in defining a reservoir as fractured or porous. It seems likely that future directions will not continue to attempt to distinguish two separate reservoir types, but will focus instead on defining behavior types. That is, certain aspects of reservoir behavior may be considered to be generally of the porous medium type (for example, field wide decline), while others may be more frequently fracture type (for example, breakthrough of reinjected water). In short, our overall view of geothermal reservoir definition is becoming a little more complex, thereby better accommodating the complexities of the reservoirs themselves. Recent research results already enable us to understand some previously contradictory results, and recognition of the difficulties is encouraging for future progress in the correct direction.
Date: December 1, 1983
Creator: Horne, Roland N.
Partner: UNT Libraries Government Documents Department

EXPERIMENTAL INVESTIGATION AND HIGH RESOLUTION SIMULATOR OF IN-SITU COMBUSTION PROCESSES

Description: Accurate simulation of in-situ combustion processes is computationally very challenging because the spatial and temporal scales over which the combustion process takes place are very small. In this sixth quarter of our DoE funded research, we continued the development of our new simulation tool which is based on an efficient Cartesian Adaptive Mesh Refinement technique. This methodology allows much higher grid densities to be used near typical fronts than current simulators. We improved the upscaling strategy on these grids, and derived an effective way to generate upscaled permeabilities that preserve local fluxes. We have started more in-depth research into splitting methods for stiff PDEs such as those found in in-situ combustion simulation. We will report on these new developments extensively in the next quarterly report. This quarterly report, we focus on experimental work. On the experimental side, we have fleshed out a mechanism of improved in-situ combustion with aqueous metallic salts using scanning electron microscopy (SEM) and the transport phenomenon of such additives through porous media. Based on the observations from SEM analysis, we propose cation exchange of metallic salts with clay as a mechanism to create activated sites that enhance combustion reactions between oil and oxygen. Moreover, the empirical ranking of the success of metallic ions as catalytic additives for in-situ combustion is interpreted as originating from three factors: cation replacing power, distribution of metallic additive adsorption sites, and cation catalytic power for oxidation and cracking of hydrocarbon.
Date: April 1, 2005
Creator: Gerritsen, Margot & Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

Description: The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.
Date: June 1, 1999
Creator: Kovscek, Anthony R. & Brigham, William E.
Partner: UNT Libraries Government Documents Department

A NUMERICAL ANALYSIS OF THE SINGLE-WELL STEAM ASSISTED GRAVITY DRAINAGE (SW-SAGD) PROCESS

Description: Steam assisted gravity drainage (SAGD) is an effective method to produce heavy oil and bitumen which are important energy resources. In a typical SAGD approach, steam is injected into a horizontal well located directly above a horizontal producer helping to displace heated oil. Single-well (SW) SAGD attempts to create a similar process using only one horizontal well. To improve early-time response of SW-SAGD, it is necessary to heat the near-wellbore area to reduce oil viscosity and allow gravity drainage to begin. Ideally heating should occur with minimal circulation or bypassing of steam. We have investigated early-time processes to improve reservoir heating. A numerical simulation study was performed to gauge combinations of cyclic steam injection and steam circulation prior to SAGD in an effort to better understand and improve early-time performance. Results from this study, include cumulative recoveries, temperature distributions, and production rates. It is found that cyclic steaming of the reservoir offers the most favorable option for heating the near-wellbore area to create conditions that improve initial SAGD response. More favorable reservoir conditions such as low viscosity, thick oil zones, and solution gas, improved reservoir response. Under unfavorable conditions, response was limited.
Date: June 1, 2001
Creator: Elliot, K.T. & Kovscek, A.R.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: This report outlines progress in the first quarter of the second year of the DOE project ''High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs''. The application of the analytical theory for gas injection processes, including the effects of volume change on mixing, has up to now been limited to fully self-sharpening systems, systems where all solution segments that connect the key tie lines present in the displacement are shock fronts. In the following report, we describe the extension of the analytical theory to include systems with rarefactions (continuous composition and saturation variations) between key tie lines. With the completion of this analysis, a completely general procedure has been developed for finding solutions for problems in which a multicomponent gas displaces a multicomponent oil.
Date: December 31, 2001
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

Description: In this report we present an approach for accurate and consistent implementation of gravity effects in compositional streamline simulation. The approach is based on an operator-splitting technique, successfully applied in streamline simulation of black-oil models. The method is demonstrated to conserve mass. Its application adds only marginally to the overall CPU requirement. We provide a detailed description of the approach to incorporate gravity effects and demonstrate the efficiency of compositional streamline simulation, even for cases where gravity segregation plays an important role in the overall process performance. The new approach is demonstrated to be in excellent agreement with commercial FD simulators for prediction of flows in 2D vertical and multi-well 3D geometries. Finally, we outline the work required to extend the compositional streamline approach to handle three-phase flow modeling, also including gravity.
Date: December 31, 2003
Creator: Franklin M. Orr, Jr.
Partner: UNT Libraries Government Documents Department

Microbially Mediated Immobilization of Contaminants Through In Situ Biostimulation

Description: In most natural environments, a multitude of metabolic substrates are resent simultaneously. Organisms that can utilize uranium as a metabolic substrate for respiration also may have the ability to use a variety of other oxidized substrates as electron acceptors. Thus, these substrates are, in effect, competing for electrons that are being passed through the electron transport chain during respiration. To assess the feasibility of in situ immobilization of uranium in subsurface environments and to understand the cycling of uranium, it is necessary to discern the chemical and/or biological conditions dictating which terminal electron acceptor(s) will be utilized.
Date: July 31, 2003
Creator: Fendorf, Scott
Partner: UNT Libraries Government Documents Department

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

Description: This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.
Date: January 1, 2003
Creator: Kovscek, Anthony R.
Partner: UNT Libraries Government Documents Department