142 Matching Results

Search Results

Advanced search parameters have been applied.

International Standards Development for Marine and Hydrokinetic Renewable Energy - Final Report on Technical Status

Description: This report summarizes the progress toward development of International Standards for Marine and Hydrokinetic Renewable Energy, as funded by the U.S. Department of Energy (DOE) under the International Electrotechnical Commission (IEC) Technical Committee 114. The project has three main objectives: 1. Provide funding to support participation of key U.S. industry technical experts in 6 (originally 4) international working groups and/or project teams (the primary standards-making committees) and to attend technical meetings to ensure greater U.S. involvement in the development of these standards. 2. Provide a report to DOE and industry stakeholders summarizing the IEC standards development process for marine and hydrokinetic renewable energy, new international standards and their justifications, and provide standards guidance to industry members. 3. Provide a semi-annual (web-based) newsletter to the marine renewable energy community. The newsletter will educate industry members and stakeholders about the processes, progress, and needs of the US efforts to support the international standards development effort. The newsletter is available at www.TC114.us
Date: October 29, 2011
Creator: Rondorf, Neil E.; Busch, Jason & Kimball, Richard
Partner: UNT Libraries Government Documents Department

Ranking of Texas reservoirs for application of carbon dioxide miscible displacement

Description: Of the 431 reservoirs screened, 211 projected revenue that exceeded cost, ie, were profitable. Only the top 154 reservoirs, however, showed a profit greater than 30%. The top 10 reservoirs predicted a profit of at least 80%. Six of the top ten were Gulf Coast sandstones. The reservoirs are representative of the most productive discoveries in Texas; they account for about 72% of the recorded 52 billion barrels oil production in the State. Preliminary evaluation in this study implied that potential production from CO{sub 2}-EOR could be as much as 4 billion barrels. In order to enhance the chances of achieving this, DOE should consider a targeted outreach program to the specific independent operators controlling the leases. Development of ownership/technical potential maps and an outreach program should be initiated to aid this identification.
Date: April 1, 1996
Creator: Ham, J
Partner: UNT Libraries Government Documents Department

Applications of the ARGUS code in accelerator physics

Description: ARGUS is a three-dimensional, electromagnetic, particle-in-cell (PIC) simulation code that is being distributed to U.S. accelerator laboratories in collaboration between SAIC and the Los Alamos Accelerator Code Group. It uses a modular architecture that allows multiple physics modules to share common utilities for grid and structure input., memory management, disk I/O, and diagnostics, Physics modules are in place for electrostatic and electromagnetic field solutions., frequency-domain (eigenvalue) solutions, time- dependent PIC, and steady-state PIC simulations. All of the modules are implemented with a domain-decomposition architecture that allows large problems to be broken up into pieces that fit in core and that facilitates the adaptation of ARGUS for parallel processing ARGUS operates on either Cray or workstation platforms, and MOTIF-based user interface is available for X-windows terminals. Applications of ARGUS in accelerator physics and design are described in this paper.
Date: December 31, 1993
Creator: Petillo, J. J.; Mankofsky, A.; Krueger, W. A.; Kostas, C.; Mondelli, A. A. & Drobot, A. T.
Partner: UNT Libraries Government Documents Department

Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

Description: Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that ...
Date: September 2002
Creator: Anastasia, Orestes; Checklick, NAncy; Couts, Vivianne; Doherty, Julie; Findsen, Jette; Gehlin, Laura et al.
Partner: UNT Libraries Government Documents Department

Implementation of NUREG-1318 guidance within the Yucca Mountain Project

Description: The US Department of Energy`s Yucca Mountain Project is implementing a quality assurance program that fulfills the requirements of the US Nuclear Regulatory Commission (NRC). Additional guidance for this program was provided in NUREG 1318, ``Technical Position on Items and Activities in the High-Level Waste Geologic Repository Program Subject to Quality Assurance Requirements`` for identification of items and activities important to public radiological safety and waste isolation. The process and organization for implementing this guidance is discussed. 3 refs., 2 figs.
Date: April 1, 1990
Creator: La Monica, L.B.; Waddell, J.D. & Hardin, E.L.
Partner: UNT Libraries Government Documents Department

Preparing a Safety Analysis Report using the building block approach

Description: The credibility of the applicant in a licensing proceeding is severely impacted by the quality of the license application, particularly the Safety Analysis Report. To ensure the highest possible credibility, the building block approach was devised to support the development of a quality Safety Analysis Report. The approach incorporates a comprehensive planning scheme that logically ties together all levels of the investigation and provides the direction necessary to prepare a superior Safety Analysis Report.
Date: March 1, 1990
Creator: Herrington, C.C.
Partner: UNT Libraries Government Documents Department

Dissemination and support of ARGUS for accelerator applications. Final report, April 24, 1991--April 14, 1995

Description: The effort has two broad goals, which have been prioritized by DOE, as follows: to enhance the ARGUS code for use in practical accelerator design simulations; to release ARGUS to the accelerator community through the Los Alamos Accelerator Code Group (LAACG). During the contract period, ARGUS versions 24 and 25 have been released. An upgraded version 25 (ARGUS v.25c) will be released in July, 1995, and will include all of the features that are tested and working at the conclusion of the DOE-funded effort. The effort that consolidated version 24 established a set of core capabilities that all ARGUS modules could access. Version 25 incorporated several major improvements: (1) a new frequency-domain module was incorporated into ARGUS that can handle degenerate modes, lossy materials, and periodic boundary conditions with sub-phase specification, and that can utilize the ARGUS data handling machinery for multiblock operation; (2) HDF output was implemented to allow ARGUS to send data to visualization tools; (3) a plasma chemistry capability was included in the steady-state PIC module to allow ionization, stripping, electron attachment, charge exchange, and other ion rate processes to occur within the PIC calculation; (4) new structure input options for figures of translation (extrusion) and figures of revolution were implemented. This ARGUS release is supported on all Cray platforms and on the IBM RS6000 Unix workstation platform. Version 25 was released in February 1994. The ARGUS dissemination and support activities have proceeded in parallel with code enhancement. On-line ARGUS support is available at NERSC through ARGUS man pages, and at the SAIC ftp node at mclapo.saic.com, through the SAIC MOSAIC home page, and through ARGUS bulletin boards maintained at SAIC and at NERSC.
Date: April 14, 1995
Creator: Kostas, C.; Krueger, W.A.; Mankofsky, A.; Mondelli, A.A. & Petillo, J.J.
Partner: UNT Libraries Government Documents Department

Models for naturally fractured, carbonate reservoir simulations

Description: This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.
Date: December 31, 1998
Creator: Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T. et al.
Partner: UNT Libraries Government Documents Department

ICRF antenna modeling and simulation. Final report, March 1, 1993--May 31, 1996

Description: SAIC has undergone a three year research and development program in support of the DOE Office of Fusion Energy`s (OFE) program in Ion Cyclotron Range of Frequencies (ICRF) heating of present, next generation, and future plasma fusion devices. The effort entailed advancing theoretical models and numerical simulation technology of ICRF physics and engineering issues associated predominately with, but not limited to, tokamak Ion Cyclotron Heating (ICH) and fast wave current drive (FWCD). Ion cyclotron heating and current drive is a central element in all current and planned large fusion experiments. In recent years, the variety of uses for ICRF systems has expanded, and includes the following: (1) Heating sufficient to drive plasma to ignition. (a) Second-harmonic T heating. (b) He{sup 3} minority heating. (2) Second-harmonic He{sup 4} heating in H plasma (for non-activated phase). (3) Detailed equilibrium profile control minority heating. (a) Ion minority (He{sup 3}) CD (for profile control on inside of plasma). (b) Ion minority (He{sup 3}) CD (for profile control on outside of plasma). (4) Ion-ion hybrid regime majority ion heating. (5) Electron current drive. (6) Mode conversion to drive current. (7) Deuterium minority heating. (8) Sawtooth instability stabilization. (9) Alpha particle parameter enhancement. (10) The generation of minority tails by ICRF to simulate D-T plasma particle physics in a deuterium plasma. Optimization of ICRF antenna performance for either heating or current drive depends critically on the complex balance and interplay between the plasma physics and the electromechanical system requirements. For example, ITER IC rf designs call for an IC. system frequency range from 20 MHz to 100 MHz. Additionally, antenna designs and operational modes that minimize impurity production and induced sheath formation may degrade current drive efficiency. Such effects have been observed in experiments involving it versus zero antenna phasing.
Date: August 30, 1996
Partner: UNT Libraries Government Documents Department

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico

Description: The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.
Date: December 31, 1998
Creator: Hoak, T.; Sundberg, K. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Reserve and production data for the Andector Field area, Central Basin Platform, West Texas: Data for model constraint and development

Description: The integrated model under development will ultimately predict reservoir properties, volumes, fluid content, and fluid composition (water, oil, and gas). Oil properties are presented here for use in subsequent flow models. To further constrain and verify these predictions, production history data, reservoir geometry, and well test data are used to map the initial potential, remaining reserves, and maximum non allowable limited production rates of the Andector Field. Historic bottom hole pressure data illustrate early production interference and boundary effects.
Date: December 31, 1998
Creator: Sundberg, K.R.; Hoak, T.E. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Fracture characterization and discrimination criteria for karst and tectonic fractures in the Ellenburger Group, West Texas: Implications for reservoir and exploration models

Description: In the Ellenburger Group fractured dolomite reservoirs of West Texas, it is extremely difficult to distinguish between multiple phases of karst-related fracturing, modifications to the karst system during burial, and overprinting tectonic fractures. From the analyses of drill core, the authors developed criteria to distinguish between karst and tectonic fractures. In addition, they have applied these criteria within the context of a detailed diagenetic cement history that allows them to further refine the fracture genesis and chronology. In these analyses, the authors evaluated the relationships between fracture intensity, morphologic attributes, host lithology, fracture cement, and oil-staining. From this analysis, they have been able to characterize variations in Ellenburger tectonic fracture intensity by separating these fractures from karst-related features. In general, the majority of fracturing in the Ellenburger is caused by karst-related fracturing although a considerable percentage is caused by tectonism. These findings underscore the importance of considering the complete geologic evolution of a karst reservoir during exploration and field development programs. The authors have been able to more precisely define the spatial significance of the fracture data sets by use of oriented core from Andector Field. They have also demonstrated the importance of these results for exploration and reservoir development programs in West Texas, and the potential to extrapolate these results around the globe. Given the historic interest in the large hydrocarbon reserves in West Texas carbonate reservoirs, results of this study will have tremendous implications for exploration and production strategies targeting vuggy, fractured carbonate systems not only in West Texas, but throughout the globe.
Date: December 31, 1998
Creator: Hoak, T.E.; Sundberg, K.R.; Deyhim, P. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

Description: The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.
Date: December 31, 1998
Creator: Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T. & Sundberg, K.
Partner: UNT Libraries Government Documents Department

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 2: Appendix A -- Waste sites, source terms, and waste inventory report; Appendix B -- Description of the field activities and report database; Appendix C -- Characterization of hydrogeologic setting report

Description: This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix A includes descriptions of waste areas and estimates of the current compositions of the wastes. Appendix B contains an extensive database of environmental data for the Bear Creek Valley Characterization Area. Information is also presented about the number and location of samples collected, the analytes examined, and the extent of data validation. Appendix C describes the hydrogeologic conceptual model for Bear Creek Valley. This model is one of the principal components of the conceptual site models for contaminant transport in BCV.
Date: September 1, 1996
Partner: UNT Libraries Government Documents Department

Mechanical failure of cavities in poroelastic media

Description: The stress-induced failure of cavities in poroelastic media is investigated using an analytical solution of the elastic matrix inclusion problem of Eshelby and a rock failure criterion. The elastic properties of the porous matrix surrounding the cavity are modeled using a self-consistent version of the theory of Berryman while the cavity collapse criterion is based on a failure condition calibrated as a function of matrix mineralogy, grain size and porosity. The influence of the latter textural variables as well as pore fluid pressure and cavity shape and orientation relative to the far-field stress are evaluated. The region of failure on the cavity surface is identified. These results are applied to the prediction of vug stability in a sedimentary basin in the context of vuggy reservoir exploration and production.
Date: December 31, 1998
Creator: Ozkan, G. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Calculation and interpretation of crustal shortening along the Central Basin Platform, West Texas: A method to calculate basement motion for modeling input

Description: The analysis carried out in the Chemical Interaction of Rocks and Fluids Basin (CIRFB) model describes the chemical and physical evolution of the entire system. One aspect of this is the deformation of the rocks, and its treatment with a rigorous flow and rheological model. This type of analysis depends on knowing the state of the model domain`s boundaries as functions of time. In the Andrews and Ector County areas of the Central Basin Platform of West Texas, the authors calculate this shortening with a simple interpretation of the basic motion and a restoration of the Ellenburger formation. Despite its simplicity, this calculation reveals two distinct periods of shortening/extension, a relatively uniform directionality to all the deformation, and the localization of deformation effects to the immediate vicinities of the major faults in the area. Conclusions are drawn regarding the appropriate expressions of these boundary conditions in the CIRFB model and possible implications for exploration.
Date: December 31, 1998
Creator: Hoak, T. E.; Sundberg, K. R. & Ortoleva, P.
Partner: UNT Libraries Government Documents Department

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

Description: This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.
Date: September 1, 1996
Partner: UNT Libraries Government Documents Department

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

Description: This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV.
Date: September 1, 1996
Partner: UNT Libraries Government Documents Department

Recent progress in 3D EM/EM-PIC simulation with ARGUS and parallel ARGUS

Description: ARGUS is an integrated, 3-D, volumetric simulation model for systems involving electric and magnetic fields and charged particles, including materials embedded in the simulation region. The code offers the capability to carry out time domain and frequency domain electromagnetic simulations of complex physical systems. ARGUS offers a boolean solid model structure input capability that can include essentially arbitrary structures on the computational domain, and a modular architecture that allows multiple physics packages to access the same data structure and to share common code utilities. Physics modules are in place to compute electrostatic and electromagnetic fields, the normal modes of RF structures, and self-consistent particle-in-cell (PIC) simulation in either a time dependent mode or a steady state mode. The PIC modules include multiple particle species, the Lorentz equations of motion, and algorithms for the creation of particles by emission from material surfaces, injection onto the grid, and ionization. In this paper, we present an updated overview of ARGUS, with particular emphasis given in recent algorithmic and computational advances. These include a completely rewritten frequency domain solver which efficiently treats lossy materials and periodic structures, a parallel version of ARGUS with support for both shared memory parallel vector (i.e. CRAY) machines and distributed memory massively parallel MIMD systems, and numerous new applications of the code.
Date: December 31, 1994
Creator: Mankofsky, A.; Petillo, J.; Krueger, W.; Mondelli, A.; McNamara, B. & Philp, R.
Partner: UNT Libraries Government Documents Department

Treatability study on the Bear Creek Valley characterization area at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Phase II work plan for S-3 site contaminated groundwater interception--in-field media evaluation and groundwater capture methods

Description: A treatability study is being conducted to support implementation:of early actions at the S-3 Site in the Bear Creek Valley (BCV) Characterization Area (CA). The objectives of the early actions Will be (1) to reduce concentrations of uranium and nitrate in Bear Creek and (2) to reduce contaminants of concern in North Tributary (NT)-1 and NT-2. The BCV CA is located within the US DOE`s Oak Ridge Reservation in Tennessee. Hazardous and radioactive materials from the Y-12 Plant operations were, disposed of at various sites within BCV. Groundwater and surface water in the BCV CA have been contaminated. The remedial investigation (RI) for the BCV CA identified that the greatest mass flux of contaminants from the various sources migrates via groundwater at the source and discharges to surface water in Bear Creek and its tributaries. In the RI, the combined discharge from the S-3 Site and the Boneyard/Burnyard (BYBY) was identified as accounting for 75% of the cancer risk and more than 80% of the chemical toxicity to Potential downgradient human receptors. In addition, the S-3 Site has caused degradation of surface water quality in upper Bear Creek and two of its tributaries. The BCV CA treatability study focuses on capture and treatment of shallow groundwater before it discharges to tributary waters. The objectives Of treatment of this groundwater are (1) to reduce the concentrations of uranium and nitrate in NT-1 and Bear Creek such that the concentrations of these chemicals in surface water and groundwater are reduced to acceptable levels, (2) to reduce the concentrations of nitrate and metals, and reduce the overall concentration of total dissolved solids; and (3) to hydraulically contain the plume of contaminated, groundwater that is moving in bedrock in the Nolichucky Shale such that the rate of contaminant discharge will be reduced in the ...
Date: December 1, 1996
Partner: UNT Libraries Government Documents Department

Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

Description: Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.
Date: June 1, 1999
Partner: UNT Libraries Government Documents Department

Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1

Description: This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV.
Date: September 1, 1996
Partner: UNT Libraries Government Documents Department

Tectonic stability and expected ground motion at Yucca Mountain

Description: A workshop was convened on August 7-8, 1984 at the direction of DOE to discuss effects of natural and artificial earthquakes and associated ground motion as related to siting of a high-level radioactive waste (HLW) repository at Yucca Mountain, Nevada. A panel of experts in seismology and tectonics was assembled to review available data and analyses and to assess conflicting opinions on geological and seismologic data. The objective of the meeting was to advise the Nevada Nuclear Waste Storage Investigations (NNWSI) Project about how to present a technically balanced and scientifically credible evaluation of Yucca Mountain for the NNWSI Project EA. The group considered two central issues: the magnitude of ground motion at Yucca Mountain due to the largest expected earthquake, and the overall tectonic stability of the site given the current geologic and seismologic data base. 44 refs.
Date: October 2, 1984
Partner: UNT Libraries Government Documents Department

Naturally fractured reservoirs: Optimized E and P strategies using a reaction-transport-mechanical simulator in an integrated approach. Summary of project accomplishments; Final report, September 30, 1998

Description: Major accomplishments of this project occurred in three primary categories: (1) fractured reservoir location and characteristics prediction for exploration and production planning; (2) implications of geologic data analysis and synthesis for exploration and development programs; and (3) fractured reservoir production modeling. The results in each category will be discussed in turn. Seven detailed reports have been processed separately.
Date: December 1, 1998
Creator: Ortoleva, P.J.; Sundberg, K.R. & Hoak, T.E.
Partner: UNT Libraries Government Documents Department