148 Matching Results

Search Results

Advanced search parameters have been applied.

New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

Description: This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.
Date: November 21, 2013
Creator: Agrawal, Rakesh
Partner: UNT Libraries Government Documents Department

Genetic and Molecular Dissection of Arsenic Hyperaccumulation in the fern Pteris vittata.

Description: Pteris vittata is a fern that is extraordinary in its ability to tolerate hyperaccumulate high levels of arsenic (As). The goals of the proposed research, to identify the genes that are necessary for As hyperaccumulation in P. vittata using molecular and genetic approaches and to understand the physiology of arsenic uptake and distribution in the living plant, were accomplished during the funding period. The genes that have been identified may ultimately enable the engineering or selection of other plants capable of As hyperaccumulation. This is important for the phytoremediation of arsenic-contaminated soils in areas where P. vittata cannot grow.
Date: April 4, 2008
Creator: Banks, Jo Ann & Salt, David
Partner: UNT Libraries Government Documents Department

NANOSCALE SCIENCE AND TECHNOLOGY FOR THE DEVELOPMENT OF ENVIRONMENTAL SENSORS

Description: Under this funding, we proposed to: i) develop a ChemFET sensor platform, ii) develop a ChemDiode sensor platform, iii) synthesize receptor molecules suitable for chemical sensing, iv) study the electrostatic potential changes induced by receptor/target binding on surfaces and v) develop VLSI fabrication approaches for micron-scale chemical sensor devices. The accomplishments under these various thrusts are summarized in this section.
Date: January 3, 2007
Creator: Ronald Andres, School of Chemical Engineering, Purdue University David Janes, School of Electrical and Computer Engineering, Purdue University Clifford Kubiak, Dept. of Chemistry, UCSD Ronald Reifenberger, Dept. of Physics, Purdue University
Partner: UNT Libraries Government Documents Department

Ultra-Small Imaging and Spectrometry Elements with Subwavelength Performance

Description: Silver/silicon dioxide and gold/silicon multilayer imaging structures are shown to have subwavelength imaging performance. The influence of the duty cycle is presented. Imaging possibilities with a slab having isotropic negative effective dielectric constant is also explored. This system may be worthy of an experimental program to establish that subwavelength resolution is practical. Success will lead to a new class of imaging, memory, and interconnection structures.
Date: July 26, 2007
Creator: Webb, Kevin J. & Shivanand
Partner: UNT Libraries Government Documents Department

Kokes Awards for the 22nd North American Catalysis Society Meeting, June 5-10, 2011

Description: The biennial North American Catalysis Society (NACS) Meetings are the premiere conferences in the area of catalysis, surface science, and reaction engineering. The 22nd meeting will be held the week of June 5-10, 2011 in Detroit, Michigan. The objective of the Meetings is to bring together leading researchers for intensive scientific exchange and interactions. Financial support that offsets some of the associated costs (specifically, registration fee, airline tickets, and hotel accommodations) would encourage graduate students, and for the first time undergraduate students, to attend and participate meaningfully in this conference. The funds sought in this proposal will help support the Richard J. Kokes Travel Award program. Graduate students eligible for these merit-based Awards are those who study at a North American university and who will present at the Meeting. We have currently 209 applications and we expect to be able to fund about half of them. The NACS has traditionally sought to encourage graduate student, and this year for the first time undergraduate studies, participation at the National Meetings and providing financial support is the most effective means to do so. Their attendance would contribute significantly to their scientific training and communication and presentation skills. They would be exposed to the leading researchers from the US and abroad; they would meet their peers from other universities; they would learn about cutting-edge results that could benefit their research projects; and they may become interested in becoming active participants in the catalysis community. These young investigators represent the next generation of scientists and engineers, and their proper training will lead to future scientific breakthroughs and technological innovations that benefit the US economy. Advances in catalysis can come in the form of more energy-efficient and environmentally-friendly chemical processes, improved fuel cell performance, efficient hydrogen production, and a cleaner environment.
Date: June 5, 2011
Creator: Ribeiro, Fabio H.
Partner: UNT Libraries Government Documents Department

Purdue Contribution of Fusion Simulation Program

Description: The overall science goal of the FSP is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in research related to the International Thermonuclear Experimental Reactor (ITER) and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical areas: 1) the plasma edge and 2) whole device modeling including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model (WDM) will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP. The FSP plan targets the needed modeling capabilities by developing Integrated Science Applications (ISAs) specific to their needs. The Pedestal-Boundary model will include boundary magnetic topology, cross-field transport of multi-species plasmas, parallel plasma transport, neutral transport, atomic physics and interactions with the plasma wall. It will address the origins and structure of the plasma electric field, rotation, the L-H transition, ...
Date: September 30, 2011
Creator: Brooks, Jeffrey
Partner: UNT Libraries Government Documents Department

Purdue Hydrogen Systems Laboratory

Description: The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation ...
Date: December 28, 2011
Creator: Gore, Jay P; Kramer, Robert; Pourpoint, Timothee L; Ramachandran, P. V.; Varma, Arvind & Zheng, Yuan
Partner: UNT Libraries Government Documents Department

Purdue Solar Energy Utilization Laboratory

Description: The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.
Date: January 21, 2014
Creator: Agrawal, Rakesh
Partner: UNT Libraries Government Documents Department

Hydrodynamic and shock heating instabilities of liquid metal strippers for RIA

Description: Stripping of accelerated ions is a key problem for the design of RIA to obtain high efficiency. Thin liquid Lithium film flow is currently considered as stripper for RIA ion beams to obtain higher Z for following acceleration: in extreme case of Uranium from Z=29 to Z=60-70 (first stripper) and from Z=70 till full stripping Z=92 (second stripper). Ionization of ion occurs due to the interaction of the ion with electrons of target material (Lithium) with the loss of parts of the energy due to ionization, Q{sub U}, which is also accompanied with ionization energy losses, Q{sub Li} of the lithium. The resulting heat is so high that can be removed not by heat conduction but mainly by convection, i.e., flowing of liquid metal across beam spot area. The interaction of the beam with the liquid metal generates shock wave propagating along direction perpendicular to the beam as well as excites oscillations along beam direction. We studied the dynamics of these excited waves to determine conditions for film stability at the required velocities for heat removal. It will allow optimizing jet nozzle shapes and flow parameters to prevent film fragmentation and to ensure stable device operation.
Date: May 24, 2013
Creator: Hassanein, Ahmed
Partner: UNT Libraries Government Documents Department

Construction of High-Performance, Low-Cost Photoelectrodes with Controlled Polycrystalline Architectures

Description: The major goal of our research was to gain the ability in electrochemical synthesis to precisely control compositions and morphologies of various oxide-based polycrystalline photoelectrodes in order to establish the composition-morphology-photoelectrochemical property relationships while discovering highly efficient photoelectrode systems for use in solar energy conversion. Major achievements include: development of porous n-type BiVO{sub 4} photoanode for efficient and stable solar water oxidation; development of p-type CuFeO{sub 2} photocathode for solar hydrogen production; and junction studies on electrochemically fabricated p-n Cu{sub 2}O homojunction solar cells for efficiency enhancement.
Date: June 30, 2013
Creator: Choi, Kyoung-Shin
Partner: UNT Libraries Government Documents Department

Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

Description: This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition of G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.
Date: October 24, 2012
Creator: Liu, Shuang
Partner: UNT Libraries Government Documents Department

Hedberg Research Conference on Fundamental Controls on Flow in Carbonates: Request for Travel Support for Post-Doctoral Fellows

Description: Carbonate reservoirs pose a scientific and engineering challenge to geophysical prediction and monitoring of fluid flow in the subsurface. Difficulties in interpreting hydrological, reservoir and other exploration data arise because carbonates are composed of a hierarchy of geological structures, constituents and processes that span a wide spectrum of length and time scales. What makes this problem particularly challenging is that length scales associated with physical structure and processes are often not discrete, but overlap, preventing the definition of discrete elements at one scale to become the building blocks of the next scale. This is particularly true for carbonates where complicated depositional environments, subsequent post-deposition diagenesis and geochemical interactions result in pores that vary in scale from submicron to centimeters to fractures, variation in fabric composition with fossils, minerals and cement, as well as variations in structural features (e.g., oriented inter- and intra layered - interlaced bedding and/or discontinuous rock units). In addition, this complexity is altered by natural and anthropogenic processes such as changes in stress, fluid content, reactive fluid flow, etc. Thus an accurate geophysical assessment of the flow behavior of carbonate reservoirs requires a fundamental understanding of the interplay of textural and structural features subjected to physical processes that affect and occur on various length and time scales. To address this complexity related to carbonates, a Hedberg conference on “Fundamental Controls on Flow in Carbonates” was held July 8 to 13, 2012, to bring together industry and academic scientists to stimulate innovative ideas that can accelerate research advances related to flow prediction and recovery in carbonate reservoirs. Participants included scientist and engineers from multiple disciplines (such as hydrology, structural geology, geochemistry, reservoir engineering, geophysics, geomechanics, numerical modeling, physical experiments, sedimentology, well-testing, statistics, mathematics, visualization, etc.) who encompass experience as well as the latest advances in these multi-faceted fields. ...
Date: April 28, 2013
Creator: Pyrak-Nolte, Laura J.
Partner: UNT Libraries Government Documents Department

The Arabidopsis Wave Complex: Mechanisms Of Localized Actin Polymerization And Growth

Description: The objective of this project was to discover the protein complexes and control mechanisms that determine the location of actin filament roadways in plant cells. Our work provided the first molecular description of protein complexes that are converted from inactive complexes to active actin filament nucleators in the cell. These discoveries provided a conceptual framework to control to roadways in plant cells that determine the location and delivery of plant metabolites and storage molecules that are relevant to the bioenergy economy.
Date: October 23, 2012
Creator: Szymanski, Daniel
Partner: UNT Libraries Government Documents Department

Advanced Natural Gas Reciprocating Engine: Parasitic Loss Control through Surface Modification

Description: This report presents results of our investigation on parasitic loss control through surface modification in reciprocating engine. In order to achieve the objectives several experimental and corresponding analytical models were designed and developed to corroborate our results. Four different test rigs were designed and developed to simulate the contact between the piston ring and cylinder liner (PRCL) contact. The Reciprocating Piston Test Rig (RPTR) is a novel suspended liner test apparatus which can be used to accurately measure the friction force and side load at the piston-cylinder interface. A mixed lubrication model for the complete ring-pack and piston skirt was developed to correlate with the experimental measurements. Comparisons between the experimental and analytical results showed good agreement. The results revealed that in the reciprocating engines higher friction occur near TDC and BDC of the stroke due to the extremely low piston speed resulting in boundary lubrication. A Small Engine Dynamometer Test Rig was also designed and developed to enable testing of cylinder liner under motored and fired conditions. Results of this study provide a baseline from which to measure the effect of surface modifications. The Pin on Disk Test Rig (POD) was used in a flat-on-flat configuration to study the friction effect of CNC machining circular pockets and laser micro-dimples. The results show that large and shallow circular pockets resulted in significant friction reduction. Deep circular pockets did not provide much load support. The Reciprocating Liner Test Rig (RLTR) was designed to simplifying the contact at the PRCL interface. Accurate measurement of friction was obtained using 3-axis piezoelectric force transducer. Two fiber optic sensors were used to measure the film thickness precisely. The results show that the friction force is reduced through the use of modified surfaces. The Shear Driven Test Rig (SDTR) was designed to simulate the mechanism of ...
Date: December 31, 2008
Creator: Sadeghi, Farshid & Wang, Chin-Pei
Partner: UNT Libraries Government Documents Department

Development of an Engineered Producet Storage Concept for the UREX+1 Combined Transuraqnic?Lanthanide Product Streams

Description: The U.S. Department of Energy is developing next generation processing methods to recycle uranium and transuranic (TRU) isotopes from spent nuclear fuel. The objective of the 3-year project described in this report was to develop near-term options for storing TRU oxides isolated through the uranium extraction (UREX+) process. More specifically, a Zircaloy matrix cermet was developed as a storage form for transuranics with the understanding that the cermet also has the ability to serve as a inert matrix fuel form for TRU burning after intermediate storage. The goals of this research projects were: 1) to develop the processing steps required to transform the effluent TRU nitrate solutions and the spent Xircaloy cladding into a zireonium matrix cermet sotrage form; and 2) to evaluate the impact of phenomena that govern durability of the storage form, material processing, and TRU utiliztion in fast reactor fuel. This report represents a compilation of the results generated under this program. The information is presented as a brief technical narrative in the following sections with appended papers, presentations and academic theses to provide a detailed review of the project's accomplishments.
Date: March 1, 2009
Creator: McDeavitt, Dr. Sean M.; Downar, Thomas J.; Taiwo, Dr. Temitope A. & Williamson, Dr. Mark A.
Partner: UNT Libraries Government Documents Department

Establishing a Comprehensive Wind Energy Program

Description: This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.
Date: September 30, 2012
Creator: Fleeter, Sanford
Partner: UNT Libraries Government Documents Department

An Experimental and Theoretical High Energy Physics Program

Description: The Purdue High Energy Physics Group conducts research in experimental and theoretical elementary particle physics and experimental high energy astrophysics. Our goals, which we share with high energy physics colleagues around the world, are to understand at the most fundamental level the nature of matter, energy, space and time, and in order to explain the birth, evolution and fate of the Universe. The experiments in which we are currently involved are: CDF, CLEO-c, CMS, LSST, and VERITAS. We have been instrumental in establishing two major in-house facilities: The Purdue Particle Physics Microstructure Detector Facility (P3MD) in 1995 and the CMS Tier-2 center in 2005. The research efforts of the theory group span phenomenological and theoretical aspects of the Standard Model as well as many of its possible extensions. Recent work includes phenomenological consequences of supersymmetric models, string theory and applications of gauge/gravity duality, the cosmological implications of massive gravitons, and the physics of extra dimensions.
Date: July 31, 2012
Creator: Shipsey, Ian
Partner: UNT Libraries Government Documents Department

Experimental and Thermalhydraulic Code Assessment of the Transient Behavior of the Passive Condenser System in an Advanced Boiling Water Reactor

Description: The main goal of the project was to study analytically and experimentally the condensation heat transfer for the passive condenser system such as GE Economic Simplified Boiling Water Reactor (ESBWR). The effect of noncondensable gas in condenser tube and the reduction of secondary pool water level to the condensation heat transfer coefficient was the main focus in this research. The objectives of this research were to : 1) obtain experimental data on the local and tube averaged condensation heat transfer rates for the PCCS with non-condensable and with change in the secondary pool water, 2) assess the RELAP5 and TRACE computer code against the experimental data, and 3) develop mathematical model and ehat transfer correlation for the condensation phenomena for system code application. The project involves experimentation, theoretical model development and verification, and thermal- hydraulic codes assessment.
Date: July 8, 2008
Creator: Revankar, S.T.; Zhou, W. & Henderson, Gavin
Partner: UNT Libraries Government Documents Department

Development of New Optical Sensors for Measurements of Mercury Concentrations, Speciation, and Chemistry

Description: A diode-laser-based ultraviolet absorption sensor for elemental mercury was developed and applied for measurements in a high-temperature flow reactor and in the exhaust stream of a coal-fired combustor. The final version of the sensor incorporates a 375-nm single-mode laser and a 784-nm distributed feedback (DFB) laser. The output of these lasers is sum-frequency mixed in a non-linear beta-barium borate crystal to generate a 254-nm beam. By tuning the frequency of the DFB laser, the ultraviolet beam frequency is tuned across the transition frequency of mercury at 253.7-nm. The tuning range is large enough that an off-resonant baseline was clearly visible on both sides of the Hg transition. Because of this large tuning range, the effects of broadband absorption can be effectively eliminated during data analysis. Broadband absorption is a major concern for lamp-based mercury sensor, and the sample to be monitored must be chemically treated prior to analysis to remove species such as SO{sub 2} that absorb near 253.7 nm. No pretreatment is required when our diode-laser-based sensor is used for elemental mercury measurements. Our laser sensor measurements were compared to measurements from a commercial mercury analyzer (CMA), and were generally in good agreement except that the insitu diode-laser-based sensor measurements tended to give somewhat higher concentrations than the CMA measurements, presumably due to absorption of elemental mercury in the sampling lines needed for the CMA measurements. At Texas A&M University, the homogeneous oxidation of elemental mercury was studied using a high-temperature flow reactor.
Date: September 28, 2008
Creator: Lucht, Robert
Partner: UNT Libraries Government Documents Department

Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

Description: During the three-year project period, Purdue University has specifically accomplished the following: revised the existing Methane Dynamics Model (MDM) to consider the effects of changes of atmospheric pressure; applied the methane dynamics model (MDM) to Siberian region to demonstrate that ebullition estimates could increase previous estimates of regional terrestrial CH{sub 4} emissions 3- to 7-fold in Siberia; Conducted an analysis of the carbon balance of the Arctic Basin from 1997 to 2006 to show that terrestrial areas of the Arctic were a net source of 41.5 Tg CH{sub 4} yr{sup −1} that increased by 0.6 Tg CH{sub 4} yr{sup −1} during the decade of analysis, a magnitude that is comparable with an atmospheric inversion of CH{sub 4}; improved the quantification of CH{sub 4} fluxes in the Arctic with inversion methods; evaluated AIRS CH4 retrieval data with a transport and inversion model and surface flux and aircraft data; to better quantify methane emissions from wetlands, we extended the MDM within a biogeochemistry model, the Terrestrial Ecosystem Model (TEM), to include a large-scale hydrology model, the variable infiltration capacity (VIC) model; more recently, we developed a single box atmospheric chemistry model involving atmospheric methane (CH{sub 4}), carbon monoxide (CO) and radical hydroxyl (OH) to analyze atmospheric CH{sub 4} concentrations from 1984 to 2008.
Date: November 16, 2012
Creator: Zhuang, Qianlai
Partner: UNT Libraries Government Documents Department

Low-Cost Substrates for High-Performance Nanorod Array LEDs

Description: The completed project, entitled “Low-Cost Substrates for High-Performance Nanorod LEDs,” targeted the goal of a phosphor-free nanorod-based white LED with IQE > 50% across the spectrum from 450 nm to 600 nm on metallized silicon substrates. The principal achievements of this project included: • Demonstration of (In,Ga)N nanopyramid heterostructures by a conventional OMVPE process. • Verification of complete filtering of threading dislocations to yield dislocation-free pyramidal heterostructures. • Demonstration of electroluminescence with a peak wavelength of ~600 nm from an (In,Ga)N nanopyramid array LED. • Development of a reflective ZrN/AlN buffer layer for epitaxial growth of GaN films and GaN nanopyramid arrays on (111)Si.
Date: April 30, 2009
Creator: Sands, Timothy; Stach, Eric & Garcia, Edwin
Partner: UNT Libraries Government Documents Department

Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

Description: A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.
Date: November 7, 2012
Creator: Li, Jian
Partner: UNT Libraries Government Documents Department

Continuous Energy, Multi-Dimensional Transport Calculations for Problem Dependent Resonance Self-Shielding

Description: The overall objective of the work here has been to eliminate the approximations used in current resonance treatments by developing continuous energy multi-dimensional transport calculations for problem dependent self-shielding calculations. The work here builds on the existing resonance treatment capabilities in the ORNL SCALE code system.
Date: March 31, 2009
Creator: Downar, T.
Partner: UNT Libraries Government Documents Department