3,009 Matching Results

Search Results

Advanced search parameters have been applied.

High-harmonic Fast Wave Heating and Current Drive Results for Deuterium H-mode Plasmas in the National Spherical Torus Experiment

Description: A critical research goal for the spherical torus (ST) program is to initiate, ramp-up, and sustain a discharge without using the central solenoid. Simulations of non-solenoidal plasma scenarios in the National Spherical Torus Experiment (NSTX) [1] predict that high-harmonic fast wave (HHFW) heating and current drive (CD) [2] can play an important roll in enabling fully non-inductive (fNI {approx} 1) ST operation. The NSTX fNI {approx} 1 strategy requires 5-6 MW of HHFW power (PRF) to be coupled into a non-inductively generated discharge [3] with a plasma current, Ip {approx} 250-350 kA, driving the plasma into an HHFW H-mode with Ip {approx} 500 kA, a level where 90 keV deuterium neutral beam injection (NBI) can heat the plasma and provide additional CD. The initial approach on NSTX has been to heat Ip {approx} 300 kA, inductively heated, deuterium plasmas with CD phased HHFW power [2], in order to drive the plasma into an H-mode with fNI {approx} 1.
Date: July 25, 2012
Creator: Taylor, G.; Bonoli, P. T.; Harvey, R. W.; Hosea, J. C.; Jaeger, E. F.; LeBlanc, B. P. et al.
Partner: UNT Libraries Government Documents Department

HHFW Heating and Current Drive Studies of NSTX H-Mode Plasmas

Description: 30 MHz high-harmonic fast wave (HHFW) heating and current drive are being developed to assist fully non-inductive plasma current (I{sub p}) ramp-up in NSTX. The initial approach to achieving this goal has been to heat I{sub p} = 300 kA inductive plasmas with current drive antenna phasing in order to generate an HHFW H-mode with significant bootstrap and RF-driven current. Recent experiments, using only 1.4 MW of RF power (P{sub RF}), achieved a noninductive current fraction, f{sub NI} {approx} 0.65. Improved antenna conditioning resulted in the generation of I{sub p} = 650 kA HHFW H-mode plasmas, with f{sub NI} {approx} 0.35, when P{sub RF} {ge} 2.5 MW. These plasmas have little or no edge localized mode (ELM) activity during HHFW heating, a substantial increase in stored energy and a sustained central electron temperature of 5-6 keV. Another focus of NSTX HHFW research is to heat an H-mode generated by 90 keV neutral beam injection (NBI). Improved HHFW coupling to NBI-generated H-modes has resulted in a broad increase in electron temperature profile when HHFW heating is applied. Analysis of a closely matched pair of NBI and HHFW+NBI H-mode plasmas revealed that about half of the antenna power is deposited inside the last closed flux surface (LCFS). Of the power damped inside the LCFS about two-thirds is absorbed directly by electrons and one-third accelerates fast-ions that are mostly promptly lost from the plasma. At longer toroidal launch wavelengths, HHFW+NBI H-mode plasmas can have an RF power flow to the divertor outside the LCFS that significantly reduces RF power deposition to the core. ELMs can also reduce RF power deposition to the core and increase power deposition to the edge. Recent full wave modeling of NSTX HHFW+NBI H-mode plasmas, with the model extended to the vessel wall, predicts a coaxial standing mode between ...
Date: June 8, 2011
Creator: Taylor, G.; Bonoli, P. T.; Green, D. L.; Harvey, R. W.; Hosea, J. C.; Jaeger, E. F. et al.
Partner: UNT Libraries Government Documents Department

Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

Description: The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-Β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMFo from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τfc) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with (τfc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 103 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.
Date: January 5, 2011
Creator: Oz, E.; Myers, C. E.; Edwards, M. R.; Berlinger, B.; Brooks, A. & Cohen, S. A.
Partner: UNT Libraries Government Documents Department

Lithium Wall Conditioning And Surface Dust Detection On NSTX

Description: Lithium evaporation onto NSTX plasma facing components (PFC) has resulted in improved energy confinement, and reductions in the number and amplitude of edge-localized modes (ELMs) up to the point of complete ELM suppression. The associated PFC surface chemistry has been investigated with a novel plasma material interface probe connected to an in-vacuo surface analysis station. Analysis has demonstrated that binding of D atoms to the polycrystalline graphite material of the PFCs is fundamentally changed by lithium - in particular deuterium atoms become weakly bonded near lithium atoms themselves bound to either oxygen or the carbon from the underlying material. Surface dust inside NSTX has been detected in real-time using a highly sensitive electrostatic dust detector. In a separate experiment, electrostatic removal of dust via three concentric spiral-shaped electrodes covered by a dielectric and driven by a high voltage 3-phase waveform was evaluated for potential application to fusion reactors
Date: May 23, 2011
Creator: Skinner, C. H.; Bell, M. G.; Friesen, F. Q. L.; Heim, B.; Jaworski, M. A.; Kugel, H. et al.
Partner: UNT Libraries Government Documents Department

LiWall Fusion - The New Concept of Magnetic Fusion

Description: Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.
Date: January 12, 2011
Creator: Zakharov, L. E.
Partner: UNT Libraries Government Documents Department

Intermittency in the Scrape-off Layer of the National Spherical Torus Experiment During H-mode Confinement

Description: A gas puff imaging diagnostic is used in the National Spherical Tokamak Experiment [M. Ono, et al., Nucl. Fusion 40, 557 (2000)] to study the edge turbulence and intermittency present during H-mode discharges. In the case of low power Ohmic H-modes the suppression of turbulence/blobs is maintained through the duration of the (short lived) H-modes. Similar quiescent edges are seen during the early stages of H-modes created with the use of neutral beam injection. Nevertheless, as time progresses following the L-H transition, turbulence and blobs reappear although at a lower level than that typically seen during L-mode confinement. It is also seen that the time-averaged SOL emission profile broadens, as the power loss across the separatrix increases. These broad profiles are characterized by a large level of fluctuations and intermittent events.
Date: November 22, 2010
Creator: Maqueda, R. J.; Stotler, D. P. & Zweben, S. J.
Partner: UNT Libraries Government Documents Department

Large Area Divertor Temperature Measurements Using A High-speed Camera With Near-infrared FiIters in NSTX

Description: Fast cameras already installed on the National Spherical Torus Experiment (NSTX) have be equipped with near-infrared (NIR) filters in order to measure the surface temperature in the lower divertor region. Such a system provides a unique combination of high speed (> 50 kHz) and wide fi eld-of-view (> 50% of the divertor). Benchtop calibrations demonstrated the system's ability to measure thermal emission down to 330 oC. There is also, however, signi cant plasma light background in NSTX. Without improvements in background reduction, the current system is incapable of measuring signals below the background equivalent temperature (600 - 700 oC). Thermal signatures have been detected in cases of extreme divertor heating. It is observed that the divertor can reach temperatures around 800 oC when high harmonic fast wave (HHFW) heating is used. These temperature profiles were fi t using a simple heat diffusion code, providing a measurement of the heat flux to the divertor. Comparisons to other infrared thermography systems on NSTX are made.
Date: April 5, 2011
Creator: Lyons, B. C.; Zweben, S. J.; Gray, T. K.; Hosea, J.; Kaita, R.; Kugel, H. W. et al.
Partner: UNT Libraries Government Documents Department

Physics of Intrinsic Rotation in Flux-Driven ITG Turbulence

Description: Global, heat flux-driven ITG gyrokinetic simulations which manifest the formation of macroscopic, mean toroidal flow profiles with peak thermal Mach number 0.05, are reported. Both a particle-in-cell (XGC1p) and a semi-Lagrangian (GYSELA) approach are utilized without a priori assumptions of scale-separation between turbulence and mean fields. Flux-driven ITG simulations with different edge flow boundary conditions show in both approaches the development of net unidirectional intrinsic rotation in the co-current direction. Intrinsic torque is shown to scale approximately linearly with the inverse scale length of the ion temperature gradient. External momentum input is shown to effectively cancel the intrinsic rotation profile, thus confirming the existence of a local residual stress and intrinsic torque. Fluctuation intensity, intrinsic torque and mean flow are demonstrated to develop inwards from the boundary. The measured correlations between residual stress and two fluctuation spectrum symmetry breakers, namely E x B shear and intensity gradient, are similar. Avalanches of (positive) heat flux, which propagate either outwards or inwards, are correlated with avalanches of (negative) parallel momentum flux, so that outward transport of heat and inward transport of parallel momentum are correlated and mediated by avalanches. The probability distribution functions of the outward heat flux and the inward momentum flux show strong structural similarity
Date: February 23, 2012
Creator: Ku, S.; Dimond, P. H.; Dif-Pradalier, G.; Kwon, J. M.; Sarazin, Y.; Hahm, T. S. et al.
Partner: UNT Libraries Government Documents Department

Evolution Of Nonlinear Waves in Compressing Plasma

Description: Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Date: May 27, 2011
Creator: Schmit, P. F.; Dodin, I. Y. & Fisch, N. J.
Partner: UNT Libraries Government Documents Department

Magnetic Diagnostics for Equilibrium Reconstructions in the Presence of Nonaxisymmetric Eddy Current Distributions in Tokamaks

Description: The lithium tokamak experiment #2;LTX#3; is a modest-sized spherical tokamak #2;R0=0.4 m and a =0.26 m#3; designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 oC. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
Date: December 10, 2010
Creator: Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J. & Zakharov, L.
Partner: UNT Libraries Government Documents Department

Methodology for Scaling Fusion Power Plant Availability

Description: Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.
Date: January 4, 2011
Creator: Waganer, Lester M.
Partner: UNT Libraries Government Documents Department

A Magnetic Diagnostic Code for 3D Fusion Equilibria

Description: A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).
Date: July 27, 2012
Creator: Lazerson, Samuel Aaron
Partner: UNT Libraries Government Documents Department

Observation And Modeling Of Inner Divertor Re-attachment In Discharges With Lithium Coatings in NSTX

Description: In the National Spherical Torus Experiment (NSTX), modifications to the inner divertor plasma regimes are observed in high triangularity, H-mode, NBI heated discharges due to lithium coatings evaporated on the plasma facing components. In particular, the drop in the recombination rate, the reduced neutral pressure and the reduced electron density (inferred from Stark broadening measurements of high−n deuterium Balmer lines) suggested that the inner divertor, which is usually detached in discharges without lithium, re-attached. Experimental results are compared to simulations obtained with a 1D partially ionized plasma transport model integrated in the non-local thermodynamic equilibrium radiation transport code CRETIN to understand how the reduced recycling affects the divertor parameters in NSTX discharges with lithium coatings.
Date: January 4, 2011
Creator: Scotti, Filippo; Soukhanovskii, V. A.; Adams, M. L.; Scott, H. A.; Kugel, H. W.; Kaita, R. et al.
Partner: UNT Libraries Government Documents Department

NSTX Report on FES Joint Facilities Research Milestone 2010

Description: Annual Target: Conduct experiments on major fusion facilities to improve understanding of the heat transport in the tokamak scrape-off layer (SOL) plasma, strengthening the basis for projecting divertor conditions in ITER. The divertor heat flux profiles and plasma characteristics in the tokamak scrape-off layer will be measured in multiple devices to investigate the underlying thermal transport processes. The unique characteristics of C-Mod, DIII-D, and NSTX will enable collection of data over a broad range of SOL and divertor parameters (e.g., collisionality ν*, beta β, parallel heat flux q||, and divertor geometry). Coordinated experiments using common analysis methods will generate a data set that will be compared with theory and simulation.
Date: March 24, 2011
Creator: Maingi, R.; Ahn, J.-W.; Gray, T. K.; McLean, A. G. & Soukhanovskii, V. A.
Partner: UNT Libraries Government Documents Department

Simulation Of Microtearing Turbulence In NSTX

Description: Thermal energy confinement times in NSTX dimensionless parameter scans increase with decreasing collisionality. While ion thermal transport is neoclassical, the source of anomalous electron thermal transport in these discharges remains unclear, leading to considerable uncertainty when extrapolating to future ST devices at much lower collisionality. Linear gyrokinetic simulations find microtearing modes to be unstable in high collisionality discharges. First non-linear gyrokinetic simulations of microtearing turbulence in NSTX show they can yield experimental levels of transport. Magnetic flutter is responsible for almost all the transport ({approx}98%), perturbed field line trajectories are globally stochastic, and a test particle stochastic transport model agrees to within 25% of the simulated transport. Most significantly, microtearing transport is predicted to increase with electron collisionality, consistent with the observed NSTX confinement scaling. While this suggests microtearing modes may be the source of electron thermal transport, the predictions are also very sensitive to electron temperature gradient, indicating the scaling of the instability threshold is important. In addition, microtearing turbulence is susceptible to suppression via sheared E-B flows as experimental values of E-B shear (comparable to the linear growth rates) dramatically reduce the transport below experimental values. Refinements in numerical resolution and physics model assumptions are expected to minimize the apparent discrepancy. In cases where the predicted transport is strong, calculations suggest that a proposed polarimetry diagnostic may be sensitive to the magnetic perturbations associated with the unique structure of microtearing turbulence.
Date: February 13, 2012
Creator: Guttenfelder, W.; Kaye, S. M.; Nevins, W. M.; Wanag, E.; Zhang, J.; Bell, R. E. et al.
Partner: UNT Libraries Government Documents Department

Simulation of Diffusive Lithium Evaporation Onto the NSTX Vessel Walls

Description: A model for simulating the diffusive evaporation of lithium into a helium filled NSTX vacuum vessel is described and validated against an initial set of deposition experiments. The DEGAS 2 based model consists of a three-dimensional representation of the vacuum vessel, the elastic scattering process, and a kinetic description of the evaporated atoms. Additional assumptions are required to account for deuterium out-gassing during the validation experiments. The model agrees with the data over a range of pressures to within the estimated uncertainties. Suggestions are made for more discriminating experiments that will lead to an improved model.
Date: December 9, 2010
Creator: Stotler, D. P.; Skinner, C. H.; Blanchard, W. R.; Krstic, P. S.; Kugel, H. W.; Schneider, H. et al.
Partner: UNT Libraries Government Documents Department

Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

Description: Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.
Date: January 11, 2011
Creator: Fetterman, Abraham J. & Fisch, Nathaniel J.
Partner: UNT Libraries Government Documents Department

Stellarator Coil Design and Plasma Sensitivity

Description: The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.
Date: November 3, 2010
Creator: Ku, Long-Poe & Boozer, Allen H.
Partner: UNT Libraries Government Documents Department

Techniques For Injection Of Pre-Charaterized Dust Into The Scrape Off Layer Of Fusion Plasma

Description: Introduction of micron-sized dust into the scrape-off layer (SOL) of a plasma has recently found many applications aimed primarily at determining dust behavior in future fusion reactors. The dust particles are typically composed of materials intrinsic to a fusion reactor. On DIII-D and TEXTOR carbon dust has been introduced into the SOL using a probe inserted from below into the divertor region. On NSTX, both Li and tungsten dust have been dropped from the top of the machine into the SOL throughout the duration of a discharge, by utilizing a vibrating piezoelectric based particle dropper. The original particle dropper was developed to inject passivated Li powder {approx} 40 {mu}m in diameter into the SOL to enhance plasma performance. A simplified version of the dropper was developed to introduce trace amounts of tungsten powder for only a few discharges, thus not requiring a large powder reservoir. The particles emit visible light from plasma interactions and can be tracked by either spectroscopic means or by fast frame rate visible cameras. This data can then be compared with dust transport codes such as DUSTT to make predictions of dust behavior in next-step devices such as ITER. For complete modeling results, it is desired to be able to inject pre-characterized dust particles in the SOL at various known poloidal locations, including near the vessel midplane. Purely mechanical methods of injecting particles are presently being studied using a modified piezoelectric-based powder dropper as a particle source and one of several piezo-based transducers to deflect the particles into the SOL. Vibrating piezo fans operating at 60 Hz with a deflection of {+-}2.5 cm can impart a significant horizontal boost in velocity. The highest injection velocities are expected from rotating paddle wheels capable of injecting particles at 10's of meters per second depending primarily on the rotation ...
Date: July 21, 2011
Creator: Roquemore, A. L.; John, B.; Friesen, F.; Hartzfeld, K. & Mansfield, D. K.
Partner: UNT Libraries Government Documents Department

Overview of Innovative PMI Research on NSTX-U and Associated PMI Facilities at PPPL

Description: Developing a reactor compatible divertor and managing the associated plasma material interaction (PMI) has been identified as a high priority research area for magnetic confinement fusion. Accordingly on NSTXU, the PMI research has received a strong emphasis. With ~ 15 MW of auxiliary heating power, NSTX-U will be able to test the PMI physics with the peak divertor plasma facing component (PFC) heat loads of up to 40-60 MW/m2 . To support the PMI research, a comprehensive set of PMI diagnostic tools are being implemented. The snow-flake configuration can produce exceptionally high divertor flux expansion of up to ~ 50. Combined with the radiative divertor concept, the snow-flake configuration has reduced the divertor heat flux by an order of magnitude in NSTX. Another area of active PMI investigation is the effect of divertor lithium coating (both in solid and liquid phases). The overall NSTX lithium PFC coating results suggest exciting opportunities for future magnetic confinement research including significant electron energy confinement improvements, Hmode power threshold reduction, the control of Edge Localized Modes (ELMs), and high heat flux handling. To support the NSTX-U/PPPL PMI research, there are also a number of associated PMI facilities implemented at PPPL/Princeton University including the Liquid Lithium R&D facility, Lithium Tokamak Experiment, and Laboratories for Materials Characterization and Surface Chemistry.
Date: September 19, 2012
Creator: Ono, M.; Jaworski, M.; Kaita, R.; Skinner, C. N.; Allain, J. P.; Maingi, R. et al.
Partner: UNT Libraries Government Documents Department

Optimization of the Configuration of Pixilated Detectors Based on the Shannon-Nyquist Theory for the X-Ray Spectroscopy of Hot Tokamak Plasmas

Description: This paper describes an optimization of the detector configuration, based on the Shannon-Nyquist theory, for two major x-ray diagnostic systems on tokamaks and stellarators: x-ray imaging crystal spectrometers and x-ray pinhole cameras. Typically, the spectral data recorded with pixilated detectors are oversampled, meaning that the same spectral information could be obtained using fewer pixels. Using experimental data from Alcator C-Mod, we quantify the degree of oversampling and propose alternate uses for the redundant pixels for additional diagnostic applications.
Date: June 13, 2012
Creator: Wang, E.; Beiersdorfer, P.; Bitter, M.; Delgado-Aprico; Hill, K. W. & Pablant, N.
Partner: UNT Libraries Government Documents Department

Ideal MHD Stability of ITER Steady State Scenarios with ITBs

Description: One of ITER goals is to demonstrate feasibility of continuous operations using non-inductive current drive. Two main candidates have been identified for advanced operations: the long duration, high neutron fluency hybrid scenario and the steady state scenario, both operating at a plasma current lower than the reference ELMy scenario [1][2] to minimize the required current drive. The steady state scenario targets plasmas with current 7-10 MA in the flat-top, 50% of which will be provided by the self-generated, pressure-driven bootstrap current. It has been estimated that, in order to obtain a fusion gain Q > 5 at a current of 9 MA, it should be ΒN > 2.5 and H > 1.5 [3]. This implies the presence of an Internal Transport Barrier (ITB). This work discusses how the stability of steady state scenarios with ITBs is affected by the external heating sources and by perturbations of the equilibrium profiles.
Date: July 27, 2011
Creator: Poli, F. M.; Kessel, C. E.; Jardin, S.; Manickam, J.; Chance, M. & Chen, J.
Partner: UNT Libraries Government Documents Department

HHFW Power Flow Along Magnetic Field Lines In The Scrape-off Layer of NSTX

Description: A significant fraction of high-harmonic fast-wave (HHFW) power applied to NSTX can be lost to the scrape-off layer (SOL) and deposited in bright and hot spirals on the divertor rather than in the core plasma. We show that the HHFW power flows to these spirals along magnetic field lines passing through the SOL in front of the antenna, implying that the HHFW power couples across the entire width of the SOL rather than mostly at the antenna face. This result will help guide future efforts to understand and minimize these edge losses in order to maximize fast wave heating and current drive.
Date: February 27, 2012
Creator: Perkins, Rory; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A. et al.
Partner: UNT Libraries Government Documents Department

The Hamiltonian Structure and Euler-Poincare Formulation of the Valsov-Maxwell and Gyrokinetic System

Description: We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in Ref. 1. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with the Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models and Casimir type stability methods. __________________________________________________
Date: September 25, 2012
Creator: Squire, J.; Qin, H. & Tang, W. M.
Partner: UNT Libraries Government Documents Department