36 Matching Results

Search Results

Advanced search parameters have been applied.

NTRCI Legacy Engine Research and Development Project Final Technical Report

Description: The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine’s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector was designed, manufactured and demonstrated in the GEN2.5B prototype.
Date: December 31, 2011
Creator: Smith-Holbert, Connie; Petrolino, Joseph; Watkins, Bart & Irick, David
Partner: UNT Libraries Government Documents Department

Hierarchy-Direction Selective Approach for Locally Adaptive Sparse Grids

Description: We consider the problem of multidimensional adaptive hierarchical interpolation. We use sparse grids points and functions that are induced from a one dimensional hierarchical rule via tensor products. The classical locally adaptive sparse grid algorithm uses an isotropic refinement from the coarser to the denser levels of the hierarchy. However, the multidimensional hierarchy provides a more complex structure that allows for various anisotropic and hierarchy selective refinement techniques. We consider the more advanced refinement techniques and apply them to a number of simple test functions chosen to demonstrate the various advantages and disadvantages of each method. While there is no refinement scheme that is optimal for all functions, the fully adaptive family-direction-selective technique is usually more stable and requires fewer samples.
Date: September 1, 2013
Creator: Stoyanov, Miroslav K
Partner: UNT Libraries Government Documents Department

Technical Issues Associated With the Use of Intermediate Ethanol Blends (>E10) in the U.S. Legacy Fleet

Description: The Oak Ridge National Laboratory (ORNL) supports the U.S. Department of Energy (DOE) in assessing the impact of using intermediate ethanol blends (E10 to E30) in the legacy fleet of vehicles in the U.S. fleet. The purpose of this report is to: (1) identify the issues associated with intermediate ethanol blends with an emphasis on the end-use or vehicle impacts of increased ethanol levels; (2) assess the likely severity of the issues and whether they will become more severe with higher ethanol blend levels, or identify where the issue is most severe; (3) identify where gaps in knowledge exist and what might be required to fill those knowledge gaps; and (4) compile a current and complete bibliography of key references on intermediate ethanol blends. This effort is chiefly a critical review and assessment of available studies. Subject matter experts (authors and selected expert contacts) were consulted to help with interpretation and assessment. The scope of this report is limited to technical issues. Additional issues associated with consumer, vehicle manufacturer, and regulatory acceptance of ethanol blends greater than E10 are not considered. The key findings from this study are given.
Date: August 1, 2007
Creator: Rich, Bechtold; Thomas, John F; Huff, Shean P; Szybist, James P; West, Brian H; Theiss, Timothy J et al.
Partner: UNT Libraries Government Documents Department

Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

Description: In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.
Date: July 1, 2008
Creator: Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E et al.
Partner: UNT Libraries Government Documents Department


Description: The 2008/2009 Knowledge and Opinions Survey, conducted for the Department of Energy's Hydrogen Program will measure the levels of awareness and understanding of hydrogen and fuel cell technologies within five target populations: (1) the general public, (2) students, (3) personnel in state and local governments, (4) potential end users of hydrogen fuel and fuel cell technologies in business and industry, and (5) safety and code officials. The ultimate goal of the surveys is a statistically valid, nationally based assessment. Distinct information collections are required for each of the target populations. Each instrument for assessing baseline knowledge is targeted to the corresponding population group. While many questions are identical across all populations, some questions are unique to each respondent group. The biggest data quality limitation of the hydrogen survey data (at least of the general public and student components) will be nonresponse bias. To ensure as high a response rate as possible, various measures will be taken to minimize nonresponse, including automated callbacks, cycling callbacks throughout the weekdays, and availability of Spanish speaking interviewers. Statistical adjustments (i.e., sampling weights) will also be used to account for nonresponse and noncoverage. The primary objective of the data analysis is to estimate the proportions of target population individuals who would respond to the questions in the various possible ways. Data analysis will incorporate necessary adjustments for the sampling design and sampling weights (i.e., probability sampling). Otherwise, however, the analysis will involve standard estimates of proportions of the interviewees responding in various ways to the questions. Sample-weight-adjusted contingency table chi-square tests will also be computed to identify differences between demographic groups The first round of Knowledge and Opinions Surveys was conducted in 2004. Analysis of these surveys produced a baseline assessment of technical knowledge about hydrogen and fuel cells and a statistically valid description of ...
Date: September 1, 2008
Creator: Schmoyer, Richard L; Truett, Lorena Faith & Diegel, Susan W
Partner: UNT Libraries Government Documents Department

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

Description: The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel ...
Date: July 1, 2012
Creator: Kass, Michael D; Theiss, Timothy J; Janke, Christopher James & Pawel, Steven J
Partner: UNT Libraries Government Documents Department

U.S. Patent 8,304,670, Portable Weighing System with Alignment Features

Description: A system for weighing a load is disclosed. The weighing system includes a pad having at least one transducer for weighing a load disposed on the pad. In some embodiments the pad has a plurality of foot members and the weighing system may include a plate that disposed underneath the pad for receiving the plurality of foot members and for aligning the foot members when the weighing system is installed. The weighing system may include a spacer disposed adjacent the pad and in some embodiments, a spacer anchor operatively secures the spacer to a support surface, such as a plate, a railway bed, or a roadway. In some embodiments the spacer anchor operatively secures both the spacer and the pad to a roadway.
Date: January 1, 2012
Creator: Abercrombie, Robert K; Richardson, Gregory; Scudiere, Matthew B & Sheldon, Frederick T
Partner: UNT Libraries Government Documents Department

U.S. Patent 8,389,878, Weigh-in-Motion Scale with Foot Alignment Features

Description: A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other comer foot member. In a strapless variant one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the comer foot member.
Date: January 1, 2013
Creator: Abercrombie, Robert K; Richardson, Gregory & Scudiere, Matthew B
Partner: UNT Libraries Government Documents Department

Wireless Roadside Inspection Proof of Concept Test Final Report

Description: The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.
Date: March 1, 2009
Creator: Capps, Gary J; Franzese, Oscar; Knee, Helmut E; Plate, Randall S & Lascurain, Mary Beth
Partner: UNT Libraries Government Documents Department

FY11 annual Report: PHEV Engine Control and Energy Management Strategy

Description: Objectives are to: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; and (2) Validate and optimize hybrid supervisory control techniques developed during previous and on-going research projects by integrating them into the vehicle level control system and complementing them with the modified engine control strategies in order to further reduce emissions during both cold start and engine re-starts. Approach used are: (1) Perform a literature search of engine control strategies used in conventional powertrains to reduce cold start emissions; (2) Develop an open source engine controller providing full access to engine control strategies in order to implement new engine/catalyst warm-up behaviors; (3) Modify engine cold start control algorithms and characterize impact on cold start behavior; and (4) Develop an experimental Engine-In-the-Loop test stand in order to validate control methodologies and verify transient thermal behavior and emissions of the real engine when combined with a virtual hybrid powertrain. Some major accomplishments are: (1) Commissioned a prototype engine controller on a GM Ecotec 2.4l direct injected gasoline engine on an engine test cell at the University of Tennessee. (2) Obtained from Bosch (with GM's approval) an open calibration engine controller for a GM Ecotec LNF 2.0l Gasoline Turbocharged Direct Injection engine. Bosch will support the bypass of cold start strategies if calibration access proves insufficient. The LNF engine and its open controller were commissioned on an engine test cell at ORNL. (3) Completed a literature search to identify key engine cold start control parameters and characterized their impact on the real engine using the Bosch engine controller to calibrate them. (4) Ported virtual hybrid vehicle model from offline simulation environment to real-time Hardware-In-the-Loop platform.
Date: October 1, 2011
Creator: Chambon, Paul H.
Partner: UNT Libraries Government Documents Department

FY12 annual Report: PHEV Engine Control and Energy Management Strategy

Description: The objectives are: (1) Investigate novel engine control strategies targeted at rapid engine/catalyst warming for the purpose of mitigating tailpipe emissions from plug-in hybrid electric vehicles (PHEV) exposed to multiple engine cold start events; (2) Optimize integration of engine control strategies with hybrid supervisory control strategies in order to reduce cold start emissions and fuel consumption of PHEVs; and (3) Ensure that development of new vehicle technologies complies with existing emission standards.
Date: May 1, 2012
Creator: Chambon, Paul H.
Partner: UNT Libraries Government Documents Department

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

Description: In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the ...
Date: July 1, 2012
Creator: Kass, Michael D; Pawel, Steven J; Theiss, Timothy J & Janke, Christopher James
Partner: UNT Libraries Government Documents Department

Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

Description: This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.
Date: May 1, 2011
Creator: LaClair, Tim J.
Partner: UNT Libraries Government Documents Department

Biomass Energy Data Book: Edition 2

Description: The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.
Date: December 1, 2009
Creator: Wright, Lynn L; Boundy, Robert Gary; Badger, Philip C; Perlack, Robert D & Davis, Stacy Cagle
Partner: UNT Libraries Government Documents Department

Error Reduction for Weigh-In-Motion

Description: Federal and State agencies need certifiable vehicle weights for various applications, such as highway inspections, border security, check points, and port entries. ORNL weigh-in-motion (WIM) technology was previously unable to provide certifiable weights, due to natural oscillations, such as vehicle bouncing and rocking. Recent ORNL work demonstrated a novel filter to remove these oscillations. This work shows further filtering improvements to enable certifiable weight measurements (error < 0.1%) for a higher traffic volume with less effort (elimination of redundant weighing).
Date: January 1, 2009
Creator: Hively, Lee M; Abercrombie, Robert K; Scudiere, Matthew B & Sheldon, Frederick T
Partner: UNT Libraries Government Documents Department

Prototype Weigh-In-Motion Performance

Description: Oak Ridge National Laboratory (ORNL) has developed and patented methods to weigh slowly moving vehicles. We have used this technology to produce a portable weigh-in-motion system that is robust and accurate. This report documents the performance of the second-generation portable weigh-in-motion prototype (WIM Gen II). The results of three modes of weight determination are compared in this report: WIM Gen II dynamic mode, WIM Gen II stop-and-go mode, and static (parked) mode on in-ground, static scales. The WIM dynamic mode measures axle weights as the vehicle passes over the system at speeds of 3 to 7 miles per hour (1.3 to 3.1 meters/second). The WIM stop-and-go mode measures the weight of each axle of the vehicle as the axles are successively positioned on a side-by-side pair of WIM measurement pads. In both measurement modes the center of balance (CB) and the total weight are obtained by a straight-forward calculation from axle weights and axle spacings. The performance metric is measurement error (in percent), which is defined as 100 x (sample standard deviation)/(average); see Appendix A for details. We have insufficient data to show that this metric is predictive. This report details the results of weight measurements performed in May 2005 at two sites using different types of vehicles at each site. In addition to the weight measurements, the testing enabled refinements to the test methodology and facilitated an assessment of the influence of vehicle speed on the dynamic-mode measurements. The initial test at the National Transportation Research Center in Knoxville, TN, involved measurements of passenger and light-duty commercial vehicles. A subsequent test at the Arrival/Departure Airfield Control Group (A/DACG) facility in Ft. Bragg, NC, involved military vehicles with gross weights between 3,000 and 75,000 pounds (1,356 to 33,900 kilograms) with a 20,000-pound (9,040 kilograms) limit per axle. For each vehicle, ...
Date: October 1, 2006
Creator: Abercrombie, Robert K; Beshears, David L; Hively, Lee M; Scudiere, Matthew B & Sheldon, Frederick T
Partner: UNT Libraries Government Documents Department

Investigation of Pipelines Integrity Associated With Pump Modules Vibration for Pumping Station 9 of Alyeska Pipeline Service Company

Description: Since the operation of PS09 SR module in 2007, it has been observed that there is vibration in various parts of the structures, on various segments of piping, and on appurtenance items. At DOT Pipeline and Hazardous Materials Safety Administration (PHMSA) request, ORNL Subject Matter Experts support PHMSA in its review and analysis of the observed vibration phenomenon. The review and analysis consider possible effects of pipeline design features, vibration characteristics, machinery configuration, and operating practices on the structural capacity and leak tight integrity of the pipeline. Emphasis is placed on protection of welded joints and machinery against failure from cyclic loading. A series of vibration measurements were carried out by the author during the site visit to PS09, the power of the operating pump during the data collection is at about 2970KW, which is less than that of APSC's vibration data collected at 3900KW. Thus, a first order proportional factor of 4900/2970 was used to project the measured velocity data to that of APSC's measurement of the velocity data. It is also noted here that the average or the peak-hold value of the measured velocity data was used in the author's reported data, and only the maximum peak-hold data was used in APSC's reported data. Therefore, in some cases APSC's data is higher than the author's projective estimates that using the average data. In general the projected velocity data are consistent with APSC's measurements; the examples of comparison at various locations are illustrated in the Table 1. This exercise validates and confirms the report vibration data stated in APSC's summary report. After the reinforcement project for PS09 Station, a significant reduction of vibration intensity was observed for the associated pipelines at the SR Modules. EDI Co. provided a detailed vibration intensity investigation for the newly reinforced Pump Module structures ...
Date: September 1, 2009
Creator: Wang, Jy-An John
Partner: UNT Libraries Government Documents Department

Effect of Intake Air Filter Condition on Vehicle Fuel Economy

Description: The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to ...
Date: February 1, 2009
Creator: Norman, Kevin M; Huff, Shean P & West, Brian H
Partner: UNT Libraries Government Documents Department

Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non&#8209;Road Engines, Report 1 - Updated

Description: In summer 2007, the U.S. Department of Energy (DOE) initiated a test program to evaluate the potential impacts of intermediate ethanol blends on legacy vehicles and other engines. The purpose of the test program is to assess the viability of using intermediate blends as a contributor to meeting national goals in the use of renewable fuels. Through a wide range of experimental activities, DOE is evaluating the effects of E15 and E20--gasoline blended with 15 and 20% ethanol--on tailpipe and evaporative emissions, catalyst and engine durability, vehicle driveability, engine operability, and vehicle and engine materials. This first report provides the results available to date from the first stages of a much larger overall test program. Results from additional projects that are currently underway or in the planning stages are not included in this first report. The purpose of this initial study was to quickly investigate the effects of adding up to 20% ethanol to gasoline on the following: (1) Regulated tailpipe emissions for 13 popular late model vehicles on a drive cycle similar to real-world driving and 28 small non-road engines (SNREs) under certification or typical in use procedures. (2) Exhaust and catalyst temperatures of the same vehicles under more severe conditions. (3) Temperature of key engine components of the same SNREs under certification or typical in-use conditions. (4) Observable operational issues with either the vehicles or SNREs during the course of testing. As discussed in the concluding section of this report, a wide range of additional studies are underway or planned to consider the effects of intermediate ethanol blends on materials, emissions, durability, and driveability of vehicles, as well as impacts on a wider range of nonautomotive engines, including marine applications, snowmobiles, and motorcycles. Section 1 (Introduction) gives background on the test program and describes collaborations with industry and ...
Date: February 1, 2009
Creator: Knoll, Keith; West, Brian H; Clark, Wendy; Graves, Ronald L; Orban, John; Przesmitzki, Steve et al.
Partner: UNT Libraries Government Documents Department