82 Matching Results

Search Results

Advanced search parameters have been applied.

Improved Wood Properties Through Genetic Manipulation: Engineering of Syringyl Lignin in Softwood Species Through Xylem-Specific Expression of Hardwood Syringyl Monolignol Pathway Genes

Description: Project Objective: Our long-term goal is to genetically engineer higher value raw materials with desirable wood properties to promote energy efficiency, international competitiveness, and environmental responsiveness of the U.S. forest products industry. The immediate goal of this project was to produce the first higher value softwood raw materials engineered with a wide range of syringyl lignin quantities. Summary: The most important wood property affecting directly the levels of energy, chemical and bleaching requirements for kraft pulp production is lignin. Softwoods contain almost exclusively chemically resistant guaiacyl (G) lignin, whereas hardwoods have more reactive or easily degradable lignins of the guaiacyl (G)-syringyl (S) type. It is also well established that the reactive S lignin component is the key factor that permits much lower effective alkali and temperature, shorter pulping time and less bleaching stages for processing hardwoods than for softwoods. Furthermore, our pulping kinetic study explicitly demonstrated that every increase in one unit of the lignin S/G ratio would roughly double the rate of lignin removal. These are clear evidence that softwoods genetically engineered with S lignin are keys to revolutionizing the energy efficiency and enhancing the environmental performance of this industry. Softwoods and hardwoods share the same genetic mechanisms for the biosynthesis of G lignin. However, in hardwoods, three additional genes branch out from the G-lignin pathway and become specifically engaged in regulating S lignin biosynthesis. In this research, we simultaneously transferred aspen S-specific genes into a model softwood, black spruce, to engineer S lignin.
Date: January 29, 2009
Creator: Joshi, Chandrashekhar P. & Chiang, Vincent L.
Partner: UNT Libraries Government Documents Department

Final Report: Metal Perhydrides for Hydrogen Storage

Description: Hydrogen is a promising energy source for the future economy due to its environmental friendliness. One of the important obstacles for the utilization of hydrogen as a fuel source for applications such as fuel cells is the storage of hydrogen. In the infrastructure of the expected hydrogen economy, hydrogen storage is one of the key enabling technologies. Although hydrogen possesses the highest gravimetric energy content (142 KJ/g) of all fuels, its volumetric energy density (8 MJ/L) is very low. It is desired to increase the volumetric energy density of hydrogen in a system to satisfy various applications. Research on hydrogen storage has been pursed for many years. Various storage technologies, including liquefaction, compression, metal hydride, chemical hydride, and adsorption, have been examined. Liquefaction and high pressure compression are not desired due to concerns related to complicated devices, high energy cost and safety. Metal hydrides and chemical hydrides have high gravimetric and volumetric energy densities but encounter issues because high temperature is required for the release of hydrogen, due to the strong bonding of hydrogen in the compounds. Reversibility of hydrogen loading and unloading is another concern. Adsorption of hydrogen on high surface area sorbents such as activated carbon and organic metal frameworks does not have the reversibility problem. But on the other hand, the weak force (primarily the van der Waals force) between hydrogen and the sorbent yields a very small amount of adsorption capacity at ambient temperature. Significant storage capacity can only be achieved at low temperatures such as 77K. The use of liquid nitrogen in a hydrogen storage system is not practical. Perhydrides are proposed as novel hydrogen storage materials that may overcome barriers slowing advances to a hydrogen fuel economy. In conventional hydrides, e.g. metal hydrides, the number of hydrogen atoms equals the total valence of the ...
Date: July 26, 2011
Creator: Hwang, J-Y.; Shi, S.; Hackney, S.; Swenson, D. & Hu, Y.
Partner: UNT Libraries Government Documents Department

Hydrogen Education Curriculum Path at Michigan Technological University

Description: The objective of this project was four-fold. First, we developed new courses in alternative energy and hydrogen laboratory and update existing courses in fuel cells. Secondly, we developed hydrogen technology degree programs. Thirdly, we developed hydrogen technology related course material for core courses in chemical engineering, mechanical engineering, and electrical engineering. Finally, we developed fuel cell subject material to supplement the Felder & Rousseau and the Geankoplis chemical engineering undergraduate textbooks.
Date: January 3, 2012
Creator: Keith, Jason; Crowl, Daniel; Caspary, David; Naber, Jeff; Allen, Jeff; Mukerjee, Abhijit et al.
Partner: UNT Libraries Government Documents Department

USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

Description: One of the principal objectives of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. During this reporting period, microbial samples were collected from the Springdale prospect area in Manistee County, Michigan. The samples were taken along the trace of the proposed horizontal wells. The samples are presently being analyzed and the results will be reported in the next quarterly report. The main news this reporting period is that the Springdale prospect area in Manistee County, Michigan, continues to see drilling activity. Our industry partner, Jordan Development Company, LLC, is permitting additional horizontal wells following their success in the prospect area.
Date: December 31, 2004
Creator: Wood, James R.; Wylie, A. & Quinlan, W.
Partner: UNT Libraries Government Documents Department

USING RECENT ADVANCES IN 2ND SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

Description: Three horizontal wells have been completed (St. Springdale & Trezil 9-15 HD, St. Springdale 13-14 HD, St. Springdale & Stedronsky 10-15 HD) and three more wells were spudded (St. Springdale & CSX 2-22 HD, St. Springdale & Mann 9-21 HD and St. Springdale 7-22 HD) in the Springdale play this past reporting period. All are horizontal wells in the Brown Niagaran. This brings the total wells in the play to 12 with seven wells contributing to a total daily production exceeding 350 bbls/day. Data from these wells has been converted from drillers logs (footage calls) and converted to Michigan GeoRef coordinates and plotted. The Gamma Ray data along the well bore was available since it was used to steer the tool during drilling and this data was superimposed on the well trajectories in an effort to help distinguish pay zones from unproductive rock. One new geochemical survey was conducted over the projected surface path of the State Springdale & Stedronsky 14-15 HD and a final project survey was planned over one of the unsurveyed wells. This will bring the total surveyed wells to five and should provide enough data to determine if the idea of only sampling along the well bore is a sound strategy.
Date: June 30, 2005
Creator: Wood, James R.; Wylie, A. & Quinlan, W.
Partner: UNT Libraries Government Documents Department

Novel Binders and Methods for Agglomeration of Ore

Description: Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. ...
Date: September 30, 2006
Creator: Kawatra, S. K.; Eisele, T. C.; Lewandowski, K. A. & Gurtler, J. A.
Partner: UNT Libraries Government Documents Department

Implementing A Novel Cyclic CO2 Flood In Paleozoic Reefs

Description: Recycled CO{sub 2} is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO{sub 2} injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and is presently producing 52 BOPD. The Salling-Hansen 4-35A also produced during this reporting period an average of 21 BOPD. These increases have occurred as a result of CO{sub 2} injection and the production rate appears to be stabilizing. CO{sub 2} injection volume has reached approximately 1.6 BCF. The CO{sub 2} injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been successfully increased to a stable rate of 73 BOPD. Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization is being completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity curves ...
Date: March 31, 2005
Creator: Wood, James R.; Quinlan, W. & Wylie, A.
Partner: UNT Libraries Government Documents Department

IMPLEMENTING A NOVEL CYCLIC CO2 FLOOD IN PALEOZOIC REEFS

Description: Recycled CO2 is being used in this demonstration project to produce bypassed oil from the Silurian Dover 35 Niagaran pinnacle reef located in Otsego County, Michigan. CO2 injection in the Dover 35 field into the Salling-Hansen 4-35A well began on May 6, 2004. A second injection well, the Salling-Hansen 1-35, commenced injection in August 2004. Oil production in the Pomerzynski 5-35 producing well increased from 9 BOPD prior to operations to an average of 165 BOPD in December, 2004 and has produced at an average rate of 61 BOPD (Jan-Dec, 2005). The Salling-Hansen 4-35A also produced during this reporting period an average of 29 BOPD. These increases have occurred as a result of CO2 injection and the production rate appears to be stabilizing. CO2 injection volume has reached approximately 2.18 BCF. The CO2 injection phase of this project has been fully operational since December 2004 and most downhole mechanical issues have been solved and surface facility modifications have been completed. It is anticipated that filling operations will run for another 6-12 months from July 1, 2005. In most other aspects, the demonstration is going well and hydrocarbon production has been stabilized at an average rate of 57 BOPD (July-Dec, 2005). Our industry partners continue to experiment with injection rates and pressures, various downhole and surface facility mechanical configurations, and the huff-n-puff technique to develop best practices for these types of enhanced recovery projects. Subsurface characterization was completed using well log tomography and 3D visualizations to map facies distributions and reservoir properties in the Belle River Mills, Chester 18, Dover 35, and Dover 36 Fields. The Belle River Mills and Chester 18 fields are being used as type-fields because they have excellent log and/or core data coverage. Amplitude slicing of the log porosity, normalized gamma ray, core permeability, and core porosity ...
Date: June 1, 2006
Creator: Wood, James R.; quinlan, W. & Wylie, A.
Partner: UNT Libraries Government Documents Department

Approach to Recover Hydrocarbons from Currently Off-Limit Areas of the Antrim Formation, MI Using Low-Impact Technologies

Description: The goal of this project was to develop and execute a novel drilling and completion program in the Antrim Shale near the western shoreline of Northern Michigan. The target was the gas in the Lower Antrim Formation (Upper Devonian). Another goal was to see if drilling permits could be obtained from the Michigan DNR that would allow exploitation of reserves currently off-limits to exploration. This project met both of these goals: the DNR (Michigan Department of Natural Resources) issued permits that allow drilling the shallow subsurface for exploration and production. This project obtained drilling permits for the original demonstration well AG-A-MING 4-12 HD (API: 21-009-58153-0000) and AG-A-MING 4-12 HD1 (API: 21-009-58153-0100) as well as for similar Antrim wells in Benzie County, MI, the Colfax 3-28 HD and nearby Colfax 2-28 HD which were substituted for the AG-A-MING well. This project also developed successful techniques and strategies for producing the shallow gas. In addition to the project demonstration well over 20 wells have been drilled to date into the shallow Antrim as a result of this project's findings. Further, fracture stimulation has proven to be a vital step in improving the deliverability of wells to deem them commercial. Our initial plan was very simple; the 'J-well' design. We proposed to drill a vertical or slant well 30.48 meters (100 feet) below the glacial drift, set required casing, then angle back up to tap the resource lying between the base to the drift and the conventional vertical well. The 'J'-well design was tested at Mancelona Township in Antrim County in February of 2007 with the St. Mancelona 2-12 HD 3.
Date: September 30, 2008
Creator: Wood, James & Quinlan, William
Partner: UNT Libraries Government Documents Department

Direct Biohydrometallurgical Extraction of Iron from Ore

Description: A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic ...
Date: October 1, 2005
Creator: Eisele, T.C.
Partner: UNT Libraries Government Documents Department

Optimization of Comminution Circuit Throughput and Product Size Distribution by Simulation and Control

Description: The goal of this project was to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process were used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced could be minimized. The goal was to save energy by reducing the amount of material that was ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that were too fine to be useful. Extensive plant sampling and mathematical modeling of the grinding circuits was carried out to determine how to correct this problem. The approaches taken included (1) Modeling of the circuit to determine process bottlenecks that restrict flowrates in one area while forcing other parts of the circuit to overgrind the material; (2) Modeling of hydrocyclones to determine the mechanisms responsible for retaining fine, high-density particles in the circuit until they are overground, and improving existing models to accurately account for this behavior; and (3) Evaluation of the potential of advanced technologies to improve comminution efficiency and produce sharper product size distributions with less overgrinding. The mathematical models were used to simulate novel circuits for minimizing overgrinding and increasing throughput, and it is estimated that a single plant grinding 15 million tons of ore per year saves up to 82.5 million kWhr/year, or 8.6 x 10{sup 11} BTU/year. Implementation of this technology in the midwestern iron ore industry, which grinds an estimated 150 million tons of ore annually to produce over 50 million tons of iron ore concentrate, would save an estimated 1 x 10{sup 13} BTU/year.
Date: July 1, 2005
Creator: Kawatra, S.K.; Eisele, T.C.; Weldum, T.; Larsen, D.; Mariani, R. & Pletka, J.
Partner: UNT Libraries Government Documents Department

Single-Step Ironmaking from Ore to Improve Energy Efficiency

Description: The pig iron nugget process was developed as an alternative to the traditional blast furnace process by Kobe Steel. The process aimed to produce pig iron nuggets, which have similar chemical and physical properties to blast furnace pig iron, in a single step. The pig iron nugget process utilizes coal instead of coke and self reducing and fluxing dried green balls instead of pellets and sinters. In this process the environmental emissions caused by coke and sinter production, and energy lost between pellet induration (heat hardening) and transportation to the blast furnace can be eliminated. The objectives of this research were to (1) produce pig iron nuggets in the laboratory, (2) characterize the pig iron nugget produced and compare them with blast furnace pig iron, (3) investigate the furnace temperature and residence time effects on the pig iron nugget production, and (4) optimize the operational furnace temperatures and residence times. The experiments involved heat treatment of self reducing and fluxing dried green balls at various furnace temperatures and residence times. Three chemically and physically different products were produced after the compete reduction of iron oxides to iron depending on the operational furnace temperatures and/or residence times. These products were direct reduced iron (DRI), transition direct reduced iron (TDRI), and pig iron nuggets. The increase in the carbon content of the system as a function of furnace temperature and/or residence time dictated the formation of these products. The direct reduced iron, transition direct reduced iron, and pig iron nuggets produced were analyzed for their chemical composition, degree of metallization, apparent density, microstructure and microhardness. In addition, the change in the carbon content of the system with the changing furnace temperature and/or residence time was detected by optical microscopy and Microhardness measurements. The sufficient carbon dissolution required for the production of pig ...
Date: October 1, 2005
Creator: Kawatra, S.K.; Anamerie, B. & Eisele, T.C.
Partner: UNT Libraries Government Documents Department

Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production

Description: This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.
Date: April 18, 2007
Creator: Huang, Xiaodi & Hwang, J.Y.
Partner: UNT Libraries Government Documents Department

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals

Description: This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube ...
Date: April 6, 2006
Creator: McKimpson, Marvin G.
Partner: UNT Libraries Government Documents Department

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs

Description: Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal to the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through ...
Date: September 30, 2008
Creator: Pennington, Wayne; Ibrahim, Mohamed; Turpening, Roger; Trisch, Sean; Richardson, Josh; Asiala, Carol et al.
Partner: UNT Libraries Government Documents Department

Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

Description: The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.
Date: April 30, 2013
Creator: Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews & Pihl, Josh
Partner: UNT Libraries Government Documents Department

Recovery Act - An Interdisciplinary Program for Education and Outreach in Transportation Electrification

Description: 1) How the project adds to the education of engineering students in the area of vehicle electrification: This project created and implemented a significant interdisciplinary curriculum in HEV engineering that includes courses focused on the major components (engines, battery cells, e‐machines, and power electronics). The new curriculum, rather uniquely, features two new classes and two new labs that emphasize a vehicle level integration of a hybrid electric powertrain that parallels the vehicle development process used by the OEMs ‐ commercial grade software is used to design a hybrid electric vehicle, hardware‐in‐the‐loop testing is performed on each component until the entire powertrain is optimized, the calibration is flashed to a vehicle, ride‐and‐drives are executed including on board data acquisition. In addition, nine existing courses were modified by adding HEV material to the courses. 2) The educational effectiveness and economic feasibility of the new curriculum: The new courses are offered at both the undergraduate and graduate levels. They are listed across the college in mechanical, chemical, electrical, and materials science and engineering. They are offered both on campus and to distance learning students. Students across the college of engineering and at all degree levels are integrating these courses into their degree programs. Over the three year project the course enrollments on‐campus has totaled 1,249. The distance learning enrollments has totaled 315. With such robust enrollments we absolutely expect that these courses will be in the curriculum for the long run. 3) How the project is otherwise of benefit to the public: One outcome of the project is the construction of the Michigan Tech Mobile Lab. Two complete HEV dynamometer test cells, and four work stations are installed in the 16.2 meter Mobile Laboratory and hauled by a class 8 truck. The Mobile Lab is used to teach the university courses. It is ...
Date: October 31, 2012
Creator: Anderson, Carl; Bohmann, Leonard; Naber, Jeffrey; Beard, John; Passerello, Chris; Worm, Jeremy et al.
Partner: UNT Libraries Government Documents Department

Direct Injection Compressed Ignition Diesel Automotive Technology Education GATE Program

Description: The underlying goal of this project was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome technological barriers preventing the development and production of cost-effective high-efficiency vehicles for the US. market. Further, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive technologies. Eight objectives were defined to accomplish this goal: (1) Develop an interdisciplinary internal combustion engine curriculum emphasizing direct injected combustion ignited diesel engines. (2) Encourage and promote interdisciplinary interaction of the faculty. (3) Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary curriculum. (4) Promote strong interaction with industry, develop a sense of responsibility with industry and pursue a self sustaining program. (5) Establish collaborative arrangements and network universities active in internal combustion engine study. (6) Further Enhance a First Class educational facility. (7) Establish ''off-campus'' M.S. and Ph.D. engine programs of study at various industrial sites. (8) Extend and Enhance the Graduate Experience.
Date: September 25, 2006
Creator: Anderson, Carl L.
Partner: UNT Libraries Government Documents Department

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

Description: The project continued in this reporting period with focus on three issues: (1) failure analysis of the FM inserts tested in the field, (2) continued study of confinement burn-out, and (3) disc cutter manufacturing. The failure analysis concludes that the main reason causing early failure of FM inserts is its low hardness, or in the other words, the FM inserts contained too much cobalt. The recipe to make the FM material needs to be changed. The continued binder burn-out experiments showed that FM confinement burn-out in a metal container filled with sand is an effective way to remove the organic binder in the inserts without causing bloating and delamination. Three 6.5 inch disc cutter sections were successfully produced. They were made of H13 powder with a green FM insert, a hot pressed FM insert, and a pre-sintered traditional WC insert respectively. One 17 inch disc cutter section was also produced from H13 powder with a pre-sintered traditional WC insert. It is planned to test the heat treatment effect on the H13 and WC bonding and manufacture full 6.5 inch disc cutters in the next quarter.
Date: April 1, 2003
Creator: Huang, Xiaodi & Gertsch, Richard
Partner: UNT Libraries Government Documents Department

IMPROVEMENT OF WEAR COMPONENT'S PERFORMANCE BY UTILIZING ADVANCED MATERIALS AND NEW MANUFACTURING TECHNOLOGIES: CASTCON PROCESS FOR MINING APPLICATIONS

Description: In this reporting period, the project focused on the investigations of FM material container-less HIPping, disc section examination and heat treatment, and full disc manufacture. The FM container-less HIPping resulted in either full density not being reached or reaching full density but losing the FM structure. Container HIPping seems to be necessary to consolidate the FM material. The heat treatment conducted on the 6.5 inch disc section with a WC insert caused cracking in the WC body and along the WC and H13 boundary. Two full 6.5 inch disc cutters were produced but contained defects. It is planned to produce more full disc cutters in the next quarter.
Date: May 1, 2003
Creator: Huang, Xiaodi & Gertsch, Richard
Partner: UNT Libraries Government Documents Department

OPTIMIZATION OF COMMINUTION CIRCUIT THROUGHPUT AND PRODUCT SIZE DISTRIBUTION BY SIMULATION AND CONTROL

Description: The goal of this project is to improve energy efficiency of industrial crushing and grinding operations (comminution). Mathematical models of the comminution process are being used to study methods for optimizing the product size distribution, so that the amount of excessively fine material produced can be minimized. The goal is to save energy by reducing the amount of material that is ground below the target size, while simultaneously reducing the quantity of materials wasted as ''slimes'' that are too fine to be useful. This will be accomplished by: (1) modeling alternative circuit arrangements to determine methods for minimizing overgrinding, and (2) determining whether new technologies, such as high-pressure roll crushing, can be used to alter particle breakage behavior to minimize fines production. During this quarter, work was focused on three areas: (1) The mathematical relationship developed for predicting plant throughput was improved, based on ore work index and equipment parameters measured in the plant over an extended period. It was determined that the model would need to fit two distinct regimes of grinding circuit operation, depending on the work index of the feed ore. (2) Plans for a proposed change in the circuit configuration at an iron ore plant are being made, to test predictions based on the work done to date in the project. After determining the desired circuit change, which would require screening a portion of the grinding slurry, samples were sent to an industrial screen manufacturer for pilot plant scale testing. These tests indicated that the screening could be carried out economically, and plans are proceeding to conduct trials of the proposed circuit alteration. (2) The mathematical model used for hydrocyclone simulations was found to be unable to fully predict the ''fish-hook'' behavior that is seen in the plant samples. The model was therefore improved by including ...
Date: April 1, 2003
Creator: Walqui, H.J.; Eisele, T.C. & Kawatra, S.K.
Partner: UNT Libraries Government Documents Department

Measurement and Model for Hazardous Chemical and Mixed Waste

Description: Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.
Date: July 30, 2002
Creator: Mullins, Michael E.; Rogers, Tony N.; Outcalt, Stephanie L.; Louie, Beverly; Watts, Laurel A. & Holcomb, Cynthia D.
Partner: UNT Libraries Government Documents Department

USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

Description: The principal objective of this demonstration project is to test surface geochemical techniques for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. As part of the project, a field demonstration was undertaken to assess the validity and usefulness of the microbial surface geochemical technique. The surface geochemistry data showed a strong anomaly in the Myrtle Beach area that would justify drilling by itself and even more so in conjunction with the structural interpretation from the 3D seismic data. The Myrtle Beach geochemical survey indicated a good to excellent prospect which was confirmed by drilling. Presented in this quarterly report is the Case History and Well Summary for the Myrtle Beach area in Burke County, North Dakota. This case history presents the important technical details regarding the geochemistry and the two vertical wells that are part of this field demonstration, and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and is being used on all subsequent field demonstrations as they near completion.
Date: July 1, 2003
Creator: Wood, James R. & Quinlan, W.
Partner: UNT Libraries Government Documents Department