148 Matching Results

Search Results

Advanced search parameters have been applied.

System requirements for one-time-use ENRAF control panel software

Description: An Enraf Densitometer is installed on tank 241-AY-102. The Densitometer will frequently be tasked to obtain and log density profiles. The activity can be effected a number of ways. Enraf Incorporated provides a software package called ''Logger18'' to its customers for the purpose of in-shop testing of their gauges. Logger18 is capable of accepting an input file which can direct the gauge to obtain a density profile for a given tank level and bottom limit. Logger18 is a complex, DOS based program which will require trained technicians and/or tank farm entries to obtain the data. ALARA considerations have prompted the development of a more user-friendly, computer-based interface to the Enraf densitometers. This document records the plan by which this new Enraf data acquisition software will be developed, reviewed, verified, and released. This plan applies to the development and implementation of a one-time-use software program, which will be called ''Enraf Control Panel.'' The software will be primarily used for remote operation of Enraf Densitometers for the purpose of obtaining and logging tank product density profiles.
Date: August 19, 1999
Creator: HUBER, J.H.
Partner: UNT Libraries Government Documents Department

241-SY Double Shell Tanks (DST) Integrity Assessment Report

Description: This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.
Date: September 21, 1999
Creator: JENSEN, C.E.
Partner: UNT Libraries Government Documents Department

Technical Basis for the Determination that Current Characterization Data and Processes are Sufficient to Ensure Safe Storage and to Design Waste Disposal

Description: This document presents the technical basis for closure of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-5 Implementation Plan milestone 5.6.3.13, ''Core sample all tanks by 2002'' (DOE-RL 1996). The milestone was based on the need for characterization data to ensure safe storage of the waste, to operate the tanks safely, and to plan and implement retrieval and processing of the waste. Sufficient tank characterization data have been obtained to ensure that existing controls are adequate for safe storage of the waste in the 177 waste tanks at the Hanford Site. In addition, a process has been developed, executed, and institutionalized to systemically identify information needs, to integrate and prioritize the needs, and to reliably obtain and analyze the associated samples. This document provides a technical case that the remaining 45 incompletely sampled tanks no longer require sampling to support the intent of the Implementation Plan milestone. Sufficient data have been obtained to close the Unreviewed Safety Questions (USQs), and to ensure that existing hazard controls are adequate and appropriately applied. However, in the future, additional characterization of tanks at the site will be required to support identified information needs. Closure of this milestone allows sampling and analytical data to be obtained in a manner that is consistent with the integrated priority process.
Date: August 12, 1999
Creator: SIMPSON, B.C.
Partner: UNT Libraries Government Documents Department

Data Quality Objectives for Tank Farms Waste Compatibility Program

Description: There are 177 waste storage tanks containing over 210,000 m{sup 3} (55 million gal) of mixed waste at the Hanford Site. The River Protection Project (RPP) has adopted the data quality objective (DQO) process used by the U.S. Environmental Protection Agency (EPA) (EPA 1994a) and implemented by RPP internal procedure (Banning 1999a) to identify the information and data needed to address safety issues. This DQO document is based on several documents that provide the technical basis for inputs and decision/action levels used to develop the decision rules that evaluate the transfer of wastes. A number of these documents are presently in the process of being revised. This document will need to be revised if there are changes to the technical criteria in these supporting documents. This DQO process supports various documents, such as sampling and analysis plans and double-shell tank (DST) waste analysis plans. This document identifies the type, quality, and quantity of data needed to determine whether transfer of supernatant can be performed safely. The requirements in this document are designed to prevent the mixing of incompatible waste as defined in Washington Administrative Code (WAC) 173-303-040. Waste transfers which meet the requirements contained in this document and the Double-Shell Tank Waste Analysis Plan (Mulkey 1998) are considered to be compatible, and prevent the mixing of incompatible waste.
Date: July 2, 1999
Creator: BANNING, D.L.
Partner: UNT Libraries Government Documents Department

Engineering Task Plan for the Ultrasonic Inspection of Hanford Double-Shell Tanks - FY 2001

Description: This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities, plan for performance demonstration testing, and a plan for field activities. Also included are a Statement of Work for contractor performance and a protocol to be followed should tank flaws that exceed the acceptance criteria are found.
Date: October 12, 2000
Creator: JENSEN, C.E.
Partner: UNT Libraries Government Documents Department

Test Plan and Test Specifications for Unloading LR-56 Waste at the 204-AR Waste Unloading Facility

Description: The LR-56 cask is an International Atomic Energy Agency (IAEA), type B (U) certified Medium to High Level Radioactive Liquid Waste Transport Cask. The LR-56 consists of a trailer equipped with the following component and systems: cubic meter lead shielded cask; Self-contained ventilation system including an air pressure/vacuum pump for cask loading and unloading; Waste temperature, level, leak detection, and other surveillance equipment; Control room for control of loading and unloading operations and waste surveillance; Hoist system for removing well caps on the cask; Power connection and control connections for operating the cask from a remote facility; The cask may be unloaded or loaded using either the onboard pressure/vacuum pump or by an external waste transfer pump. Rinse heads and connections allow the cask to be rinsed using supplied rinse water. The cask was designed to be vented using the LR-56 onboard ventilation system, which is connected to the cask via a hose through a penetration in the cask. Three wells located on the top of the cask, offer valved penetrations into the cask for venting, waste pumping, and rinsing. Other penetrations in the cask enable surveillance instrumentation to be used to monitor inside the cask. To date, the LR-56 cask system at the Hanford facility has not been used. Since the vessel has never received radioactive waste, the LR-56 is not yet a regulated system. It is desired to use the LR-56 cask to transport waste in calendar year 2000.
Date: December 3, 2000
Creator: BROWN, T.M.
Partner: UNT Libraries Government Documents Department

Methodology for Predicting Flammable Gas Mixtures in Double Contained Receiver Tanks [SEC 1 THRU SEC 3]

Description: This methodology document provides an estimate of the maximum concentrations of flammable gases (ammonia, hydrogen, and methane) which could exist in the vapor space of a double-contained receiver tank (DCRT) from the simultaneous saltwell pumping of one or more single-shell tanks (SSTs). This document expands Calculation Note 118 (Hedengren et a1 1997) and removes some of the conservatism from it, especially in vapor phase ammonia predictions. The methodologies of Calculation Note 118 (Hedengren et a1 1997) are essentially identical for predicting flammable gas mixtures in DCRTs from saltwell pumping for low DCRT ventilation rates, 1e, < 1 cfm. The hydrogen generation model has also been updated in the methodology of this document.
Date: January 31, 2000
Creator: HEDENGREN, D.C.
Partner: UNT Libraries Government Documents Department

Radioactive air emissions notice of construction 241-ER-311 catch tank

Description: The following description, attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions & Defense Waste Section as a notice of construction (NOC) in accordance with the Washington Administrative Code (WAC) 246-247, Radiation Protection - Air Emissions. The WAC 246-247-060, ''Applications, registration and licensing,'' states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of the information listed in Appendix A,'' Appendix A (WAC 246-247-110) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the U.S. Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40, Code of Federal Regulations (CFR), Part 6 1, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide less than 0.1 millirem/year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time frame. Therefore, this application is also intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(l), and it is requested that approval of this application will also constitute EPA acceptance of this 40 CFR 61.09(a)(l) notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided later.
Date: November 1, 1999
Creator: HILL, J.S.
Partner: UNT Libraries Government Documents Department

Functions and Requirements and Specifications for Replacement of the Computer Automated Surveillance System (CASS)

Description: This functions, requirements and specifications document defines the baseline requirements and criteria for the design, purchase, fabrication, construction, installation, and operation of the system to replace the Computer Automated Surveillance System (CASS) alarm monitoring.
Date: December 16, 1999
Creator: Scaief, C. C.
Partner: UNT Libraries Government Documents Department

Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

Description: The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System, Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix.
Date: October 17, 2000
Creator: LECHELT, J.A.
Partner: UNT Libraries Government Documents Department

241-AZ Double Shell Tanks (DST) Integrity Assessment Report

Description: This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks.
Date: September 21, 1999
Creator: JENSEN, C.E.
Partner: UNT Libraries Government Documents Department

Tank 241-AZ-101 and Tank 241-AZ-102 Airlift Circulator Operation Vapor Sampling and Analysis Plan

Description: This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs) and during the initial operation (''bump'') of the tank 241-AZ-101 mixer pumps. The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-142-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No. 2E98-082 and No. 2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). In addition the last two vapor samples will be collected from the headspace of tank 241-AZ-101 during the operation of the mixer pumps. Each mixer pump will be operated for approximately 5 minutes. Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds. The following sections provide the general methodology and procedures to be used in the preparation, ...
Date: December 7, 1999
Creator: TEMPLETON, A.M.
Partner: UNT Libraries Government Documents Department

River Protection Project FY 2000 Multi Year Work Plan Summary

Description: The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort.
Date: August 27, 1999
Creator: LENSEIGNE, D.L.
Partner: UNT Libraries Government Documents Department

Final results of double-shell tank 241-AZ-101 ultrasonic inspection

Description: This document presents the results and documentation of the nondestructive ultrasonic examination of tank 241-AZ-101. A tank inspection supplier was retained to provide and use an ultrasonic examination system (equipment, procedures, and inspectors) to scan a limited area of double-shell tank 241-AZ-101 primary tank wall and welds. The inspection found one reportable indication of thinning and no reportable pitting, corrosion, or cracking.
Date: August 23, 1999
Creator: JENSEN, C.E.
Partner: UNT Libraries Government Documents Department

Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

Description: The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.
Date: June 1, 2000
Creator: BARNES, D.A.
Partner: UNT Libraries Government Documents Department

Process Test Evaluation Report Waste Retrieval Sluicing System Emissions Collection (Phase 1 - 2 and 3)

Description: During sluicing of the first batch of sludge from tank 241-C-106 on November 18, 1998, an unexpected high concentration of volatile organic compounds was measured in the 296-C-006 ventilation stack. Eleven workers reported irritation related symptoms and were sent to Hanford Environmental Health Foundation (HEHF) and Kadlec Hospital for medical evaluations. No residual health effects were reported. As a result of the unexpectedly high concentrations of volatile organic compounds encountered during this November sluicing event, a phased process test designed to characterize the emission constituents was conducted on December 16, 1998, March 7, 1999, and March 28, 1999. The primary focus of this evaluation was to obtain samples of the 296-C-006 ventilation stack effluent and surrounding areas at elevated levels of volatile organic compounds initiated by sluicing. Characterization of the emission constituents was necessary to establish appropriate procedural and administrative exposure controls for continued sluicing. Additionally, this information would be used to evaluate the need for engineered equipment to mitigate any further potential chemical stack emissions. This evaluation confirms that the following actions taken during Phase I, Phase II, and Phase III of the Waste Retrieval Sluicing System Emissions Collection Process Test were conservative and appropriate for continued sluicing: Implement stack limit of 500 ppm volatile organic compounds, with lower administrative limits; Ensure worker involvement through enhanced planning; Continue using the existing fenced boundary location; Continue using pressure demand fresh air respiratory protection inside the C-Farm as recommended by Industrial Hygiene; Continue using the existing respiratory protection/ take cover requirements outside the C-Farm boundary as recommended by Industrial Hygiene; Continue using existing anti-contamination clothing; Minimize the number of workers exposed to emissions; Maintain the number of workers exposed to emissions; Maintain the current stack height; Maintain the current 2 ppm volatile organic compound direct reading instrument administrative level; Evaluate the ...
Date: December 29, 1999
Creator: PARKMAN, D.B.
Partner: UNT Libraries Government Documents Department

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan

Description: This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.
Date: September 1, 1999
Creator: BURBANK, D.A.
Partner: UNT Libraries Government Documents Department

Process Control Plan for Tank 241-SY-101 Surface Level Rise Remediation

Description: The tank 241-SY-101 transfer system was conceived and designed to address the immediate needs presented by rapidly changing waste conditions in tank 241-SY-101. Within approximately the last year, the waste in this tank has exhibited unexpected behavior (Rassat et al. 1999) in the form of rapidly increasing crust growth. This growth has been brought about by a rapidly increasing rate of gas entrapment within the crust. It has been conceived that the lack of crust agitation beginning upon the advent of mixer pump operations may have set-up a more consolidated, gas impermeable barrier when compared to a crust regularly broken up by the prior buoyant displacement events within the tank. The interim goals of the project are to: (1) protect the mixer pump operability (2) begin releasing gas from the crust, and (3) begin dissolving the crust and solids in the slurry layer. The final goals of the project (Final State) are to solve both the level growth and BD-GRE safety issues in this tank by achieving a condition of the waste such that no active measures are required to safely store the waste, i.e., crust and non convective layer are mostly dissolved, and therefore the mixer pump will no longer be needed to prevent BD-GREs in excess of 100% LFL. Transfers (which are designed to create space in the tank) and dilution (which will dissolve the solids) will accomplish this. Dissolution of solids will result in a release of gas retained by those solids and remove that volume of solids as a future retention site.
Date: November 1, 1999
Creator: Estey, S. D.
Partner: UNT Libraries Government Documents Department

Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

Description: This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for the Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.
Date: July 2, 1999
Creator: MULKEY, C.H.
Partner: UNT Libraries Government Documents Department

Sample Based Unit Liter Dose Estimates

Description: The Tank Waste Characterization Program has taken many core samples, grab samples, and auger samples from the single-shell and double-shell tanks during the past 10 years. Consequently, the amount of sample data available has increased, both in terms of quantity of sample results and the number of tanks characterized. More and better data is available than when the current radiological and toxicological source terms used in the Basis for Interim Operation (BIO) (FDH 1999) and the Final Safety Analysis Report (FSAR) (FDH 1999) were developed. The Nuclear Safety and Licensing (NS&L) organization wants to use the new data to upgrade the radiological and toxicological source terms used in the BIO and FSAR. The NS and L organization requested assistance in developing a statistically based process for developing the source terms. This report describes the statistical techniques used and the assumptions made to support the development of a new radiological source term for liquid and solid wastes stored in single-shell and double-shell tanks.
Date: July 8, 1999
Creator: JENSEN, L.
Partner: UNT Libraries Government Documents Department