13,394 Matching Results

Search Results

Advanced search parameters have been applied.

Forces in a thin cosine(n{theta}) helical wiggler

Description: We commence with the derivation of the Lorentz force density on a surface of discontinuity based on the expressions of fields and currents previously derived (Appendix A). Applying such Lorentz body forces to the equilibrium condition of an infinitesimal surface area yields a set of differential equations for the local total force. In attempting to solve such differential equations it may prove to be useful and prudent to reduce their complexity by first transforming all fields, current densities and Lorentz forces to a coordinate system that is aligned with the direction of the current flow. A Frenet--Serret rotating unit vector coordinate system may serve such a purpose and will reduce the 3 components of the Lorentz force to 2. We proceed with obtaining such a conversion through the use of differential geometry, although a more straight forward approach may exist through the use of surface developability and coordinate transformation. Following a solution to the force equations we continue with and example of a nested set of a combined function dipole and quadrupole that employ an identical periodicity {omega}. The expressions for the self force and the mutual force on each magnet element are obtained. Finally, by reducing the periodicity {omega} to zero we obtain the force expressions for long (2D) multipole magnets including both the self and interactive forces.
Date: March 1, 1995
Creator: Caspi, S.
Partner: UNT Libraries Government Documents Department

Influence of sample composition on aerosol organic and black carbon determinations

Description: In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.
Date: July 1, 1995
Creator: Novakov, T. & Corrigan, C.E.
Partner: UNT Libraries Government Documents Department

High-intensity sources for light ions

Description: The use of the multicusp plasma generator as a source of light ions is described. By employing radio-frequency induction discharge, the performance of the multicusp source is greatly improved, both in lifetime and in high brightness H{sup +} and H{sup {minus}} beam production. A new technique for generating multiply-charged ions in this type of ion source is also presented.
Date: October 1, 1995
Creator: Leung, K.N.
Partner: UNT Libraries Government Documents Department

UV laser ionization and electron beam diagnostics for plasma lenses

Description: A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated.
Date: April 1, 1995
Creator: Govil, R.; Volfbeyn, P. & Leemans, W.
Partner: UNT Libraries Government Documents Department

Effects of enclosure on the performance of the weak-swirl burner

Description: This paper reports a study of the velocity and scalar characteristics of the weak-swirl burner in enclosures. WSB utilizes a unique aerodynamic mechanism to stabilize lean burning premixed combustion over a wide range of equivalence ratios ({phi}) and power inputs. As the WSB was developed for fundamental research, previous works focused only on open WSBs. Recent success in adapting the WSB to practical use suggests that a better understanding of the WSB in enclosures is required for further development. Laser Doppler anemometry (LDA), and Mie scattering of oil droplets (MSOD), are used to measure the flame flowfields and flame crossing spectra of the WSB with an open flame, enclosed within a quartz cylinder and within a cylinder with a restricted exit. The flame of the enclosed WSB remained extremely stable and did not develop recirculation zones or audible characteristics. The only change observed was a greater divergence of the flowfield upstream of the reaction zone. Neither lengthening the enclosure nor restricting the flow downstream caused any noticeable difference in the operation of the WSB. This work has demonstrated that the WSB should be amenable for adaptation to a wide variety of low NO{sub x} applications.
Date: October 1, 1995
Creator: Yegian, D.K. & Cheng, R.K.
Partner: UNT Libraries Government Documents Department

Excited state carrier dynamics in CdS{sub x}Se{sub 1-x} semisconductor alloys as studied by ultrafast fluorescence spectroscopy

Description: This dissertation discusses studies of the electron-hole pair dynamics of CdS{sub x}Se{sub 1-x} semiconductor alloys for the entire compositional range from x = 1 to x = 0 as examined by the ultrafast fluorescence techniques of time correlated single photon counting and fluorescence upconversion. Specifically, samples with x = 1, .75, .5, .25, and 0 were studied each at a spread of wavelengths about its respective emission maximum which varies according to {lambda} = 718nm - 210x nm. The decays of these samples were found to obey a Kohlrausch distribution, exp [(t/{tau}){sup {beta}}], with the exponent 3 in the range .5-.7 for the alloys. These results are in agreement with those expected for localization due to local potential variations resulting from the random distribution of sulfur and selenium atoms on the element VI A sub-lattice. This localization can be understood in terms of Anderson localization of the holes in states whose energy distribution tails into the forbidden energy band-gap. Because these states have energy dependent lifetimes, the carriers can decay via many parallel channels. This distribution of channels is the ultimate source of the Kohlrausch form of the fluorescence decays.
Date: August 1, 1995
Creator: Gadd, S. E.
Partner: UNT Libraries Government Documents Department

Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

Description: The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.
Date: September 1, 1995
Creator: Kinoshita, K.
Partner: UNT Libraries Government Documents Department

Efficiency improvements in US Office equipment: Expected policy impacts and uncertainties

Description: This report describes a detailed end-use forecast of office equipment energy use for the US commercial sector. We explore the likely impacts of the US Environmental Protection Agency`s ENERGY STAR office equipment program and the potential impacts of advanced technologies. The ENERGY STAR program encourages manufacturers to voluntarily incorporate power saving features into personal computers, monitors, printers, copiers, and fax machines in exchange for allowing manufacturers to use the EPA ENERGY STAR logo in their advertising campaigns. The Advanced technology case assumes that the most energy efficient current technologies are implemented regardless of cost.
Date: December 1, 1995
Creator: Koomey, J.G.; Cramer, M.; Piette, M.A. & Eto, J.H.
Partner: UNT Libraries Government Documents Department

A CMOS delay locked loop and sub-nanosecond time-to-digital converter chip

Description: Many high energy physics and nuclear science applications require sub-nanosecond time resolution measurements over many thousands of detector channels. Phase-locked loops have been employed in the past to obtain accurate time references for these measurements. An alternative solution, based on a delay-locked loop (DLL) is described. This solution allows for a very high level of integration yet still offers resolution in the sub-nanosecond regime. Two variations on this solution are outlined. A novel phase detector, based on the Muller C element, is used to implement a charge pump where the injected charge approaches zero as the loop approaches lock on the leading edge of an input clock reference. This greatly reduces timing jitter. In the second variation the loop locks to both the leading and trailing clock edges. In this second implementation, software coded layout generators are used to automatically layout a highly integrated, multi-channel, time to digital converter (TDC). Complex clock generation can be, achieved by taking symmetric taps off the delay elements. The two circuits, DLL and TDC, were implemented in a CMOS 1.2{mu}m and 0.8{mu}m technology, respectively. Test results show a timing jitter of less than 35 ps for the DLL circuit and better solution for the TDC circuit.
Date: December 1, 1995
Creator: Santos, D.M.; Dow, S.F. & Levi, M.E.
Partner: UNT Libraries Government Documents Department

Some options for the muon collider capture and decay solenoids

Description: This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed.
Date: November 1, 1995
Creator: Green, M.A.
Partner: UNT Libraries Government Documents Department

A,B,C`s of nuclear science

Description: This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.
Date: August 7, 1995
Creator: Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A. et al.
Partner: UNT Libraries Government Documents Department

Reducing residential cooling requirements through the use of electrochromic windows

Description: This paper presents the results of a study investigating the energy performance of electrochromic windows in a prototypical residential building under a variety of state switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling energy and peak demand as a function of glazing type, size, and electrochromic control strategy. A single-story ranch-style home located in the cooling-dominated locations of Miami, FL and Phoenix, AZ was simulated. Electrochromic control strategies analyzed were based on incident total solar radiation, space cooling load, and outside air temperature. Our results show that an electrochromic material with a high reflectance in the colored state provides the best performance for all control strategies. On the other hand, electrochromic switching using space cooling load provides the best performance for all the electrochromic materials. The performance of the incident total solar radiation control strategy varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); i.e., required cooling decreases as the setpoint range decreases; also, performance differences among electrochromics increases. The setpoint range of outside air temperature control of electrochromics must relate to the ambient weather conditions prevalent in a particular location. If the setpoint range is too large, electrochromic cooling performance is very poor. Electrochromics compare favorably to conventional low-E clear glazings that have high solar heat gain coefficients that are used with overhangs. However, low-E tinted glazings with low solar heat gain coefficients can outperform certain electrochromics. Overhangs should be considered as a design option for electrochromics whose state properties do not change significantly between bleached and colored states.
Date: May 1, 1995
Creator: Sullivan, R.; Rubin, M. & Selkowitz, S.
Partner: UNT Libraries Government Documents Department

Algorithms for biomagnetic source imaging with prior anatomical and physiological information

Description: This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.
Date: December 1995
Creator: Hughett, P. W.
Partner: UNT Libraries Government Documents Department

A multi-channel time-to-digital converter chip for drift chamber readout

Description: A complete, multi-channel, timing and amplitude measurement IC for use in drift chamber applications is described. By targeting specific resolutions, i.e. 6-bits of resolution for both time and amplitude, area and power can be minimized while achieving the proper level of measurement accuracy. Time is digitized using one eight channel TDC comprised of a delay locked loop and eight sets of latches and encoders. Amplitude (for dE/dx) is digitized using a dual-range FADC for each channel. Eight bits of dynamic range with six bits of accuracy are achieved with the dual-range. The timing and amplitude information is multiplexed into one DRAM (Dynamic Random Access Memory) trigger latency buffer. Interesting events are then transferred into an SRAM (Static Random Access Memory) readout buffer before the latency time has expired. The design has been optimized to achieve the requisite resolution using the smallest area and lowest power. The circuit has been implemented in a 0.8{mu} triple metal CMOS process. The TDC sub-element has been measured to have better than 135 ps time resolution and 35 ps jitter. The DRAM has a measured cycle time of 80 MHz.
Date: December 1, 1995
Creator: Santos, D.M.; Chau, A.; DeBusshere, D.; Dow, S.; Flasck, J.; Levi, M. et al.
Partner: UNT Libraries Government Documents Department

Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

Description: Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.
Date: November 1, 1995
Creator: Comnes, G.A.; Stoft, S.; Greene, N. & Hill, L.J.
Partner: UNT Libraries Government Documents Department

Modeling the effects of reflective roofing

Description: Roofing materials which are highly reflective to sunlight are currently being developed. Reflective roofing is an effective summertime energy saver in warm and sunny climates. It has been demonstrated to save up to 40% of the energy needed to cool a building during the summer months. Buildings without air conditioning can reduce their indoor temperatures and improve occupant comfort during the summer if highly reflective roofing materials are used. But there are questions about the tradeoff between summer energy savings and extra wintertime energy use due to reduced heat collection by the roof. These questions are being answered by simulating buildings in various climates using the DOE-2 program (version 2.1E). Unfortunately, DOE-2 does not accurately model radiative, convective and conductive processes in the roof-attic. Radiative heat transfer from the underside of a reflective roof is much smaller than that of a roof which absorbs heat from sunlight, and must be accounted for in the building energy model. Convection correlations for the attic and the roof surface must be fine tuned. An equation to model the insulation`s conductivity dependence on temperature must also be added. A function was written to incorporate the attic heat transfer processes into the DOE-2 building energy simulation. This function adds radiative, convective and conductive equations to the energy balance of the roof. Results of the enhanced DOE-2 model were compared to measured data collected from a school bungalow in a Sacramento Municipal Utility District monitoring project, with particular attention paid to the year-round energy effects.
Date: August 1, 1996
Creator: Gartland, L.M.; Konopacki, S.J. & Akbari, H.
Partner: UNT Libraries Government Documents Department

Magnetic field dependence of up-converted photoluminescence in partially ordered GaInP{sub 2}/GaAs up to 23 T

Description: The influence of a strong magnetic field on the up-converted photoluminescence (PL) spectra of partially ordered layers of GaInP{sub 2} grown on GaAs substrate have been investigated. The up-converted PL spectra exhibit 2 peaks. The position of the low energy peak is close to that of the peak observed in Pl spectra excited by above GaInP{sub 2} bandgap light while the other peak occurs at about 30 meV higher in energy. Both peaks show a linear dependence on B between 0 and 23 T suggesting that free carriers with effective masses of 0.084 m{sub 0} and 0.24m{sub 0} (m{sub 0} is the free electron mass) are involved in these transitions. They interpret the low energy peak as originating from the recombination of localized holes with free electrons while the high energy peak is related to the recombination of localized electrons with free holes.
Date: September 1, 1996
Creator: Zeman, J.; Martinez, G.; Yu, P.Y. & Uchida, K.
Partner: UNT Libraries Government Documents Department

Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

Description: Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.
Date: August 1996
Creator: Jump, D. A.; Walker, I. S. & Modera, M. P.
Partner: UNT Libraries Government Documents Department

The quest for new phenomena

Description: The Standard Model of particle physics has been very successful in describing experimental data with great precision. With the exception of some neutrino anomalies, there is no data that is in disagreement with it. Nevertheless, the model is regarded as incomplete and unsatisfactory. There is no explanation of the pattern of quark and lepton masses and, possibly more important, no understanding of the scale of electroweak interactions. Electroweak symmetry breaking is implemented in the Standard Model from the presence of a scalar electroweak doublet, the Higgs field, that acquires a vacuum expectation value of order 250 GeV and leaves as a remnant one physical state, the electrically neutral Higgs boson whose mass is not predicted. In this talk, the author compares the techniques used at, and capabilities of, various facilities in searching for new phenomena. The author emphasizes the cases where information from more than one facility may be needed to fully explore the physics.
Date: December 1, 1996
Creator: Hinchliffe, I.
Partner: UNT Libraries Government Documents Department

High-frequency electric field measurement using a toroidal antenna

Description: In this paper the author describes an innovative method of measuring high-frequency electric fields using a toroid. For typical geophysical applications the new sensor will detect electric fields for a wide range of spectrum starting from 1.0 MHz. This window, in particular the lower frequency range between 1.0 to 100 MHz, has not been used for existing electromagnetic or radar systems to detect small objects in the upper few meters of the ground. Ground penetrating radar (GPR) can be used successfully in this depth range if the ground is resistive but most soils are, in fact, conductive (0.01 to 1.0 S/m) rendering GPR inefficient. Other factors controlling the resolution of GPR system for small objects is the spatial averaging inherent in the electric dipole antenna and the scattering caused by soil inhomogeneities of dimensions comparable to the wavelength (and antenna size). For maximum resolution it is desirable to use the highest frequencies but the scattering is large and target identification is poor. Time-varying magnetic fields induce an emf (voltage) in a toroid. The electric field at the center of the toroid is shown to be linearly related to this induced voltage. By measuring the voltage across a toroid one can easily and accurately determine the electric field. The new sensor will greatly simplify the cumbersome procedure involved with GPR measurements with its center frequency less than 100 MHz. The overall size of the toroidal sensor can be as small as a few inches. It is this size advantage that will not only allow easy fabrication and deployment of multi-component devices either on the surface or in a borehole, but it will render greatly improved resolution over conventional systems.
Date: January 1, 1997
Creator: Lee, K.H.
Partner: UNT Libraries Government Documents Department

Hybrid gas-metal co-implantation with a modified vacuum arc ion source

Description: Energetic beams of mixed metal and gaseous ion species can be generated with a vacuum arc ion source by adding gas to the arc discharge region. This could be an important tool for ion implantation research by providing a method for forming buried layers of mixed composition such as e.g. metal oxides and nitrides. In work to date, we have formed a number of mixed metal-gas ion beams including Ti+N, Pt+N, Al+O, and Zr+O. The particle current fractions of the metal-gas ion components in the beam ranged from 100% metallic to about 80% gaseous, depending on operational parameters. We have used this new variant of the vacuum arc ion source to carry out some exploratory studies of the effect of Al+O and Zr+O co-implantation on tribology of stainless steel. Here we describe the ion source modifications, species and charge state of the hybrid beams produced, and results of preliminary studies of surface modification of stainless steel by co-implantation of mixed Al/O or Zr/O ion beams. 5 figs, 21 refs.
Date: August 1, 1996
Creator: Oks, E.M.; Yushkov, G.Y.; Evans, P.J.; Oztarhan, A.; Brown, I.G.; Dickinson, M.R. et al.
Partner: UNT Libraries Government Documents Department

Protein-salt binding data from potentiometric titrations of lysozyme in aqueous solutions containing KCl

Description: An existing method for potentiometric titrations of proteins was improved, tested and applied to titrations of the enzyme hen-egg-white lysozyme in aqueous solutions containing KCl at ionic strengths from 0.1 M to 2.0 M at 25 C. Information about the protein`s net charge dependence on pH and ionic strength were obtained and salt binding numbers for the system were calculated using a linkage concept. For the pH range 2.5--11.5, the net charge slightly but distinctly increases with increasing ionic strength between 0.1 M and 2.0 M. The differences are most distinct in the pH region below 5. Above pH 11.35, the net charge decreases with increasing ionic strength. Preliminary calculation of binding numbers from titration curves at 0.1 M and 1.0 M showed selective association of chloride anions and expulsion of potassium ions at low pH. Ion-binding numbers from this work will be used to evaluate thermodynamic properties and to correlate crystallization or precipitation phase-equilibrium data in terms of a model based on the integral-equation theory of fluids which is currently under development.
Date: March 1, 1997
Creator: Engmann, J.; Blanch, H.W. & Prausnitz, J.M.
Partner: UNT Libraries Government Documents Department

NMR studies of DNA oligomers and their interactions with minor groove binding ligands

Description: The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.
Date: May 1, 1996
Creator: Fagan, P.A.
Partner: UNT Libraries Government Documents Department

Vadose zone monitoring system installation report for McClellan AFB

Description: Two vadose zone monitoring systems (VZMS) have been installed at Site S-7, in Investigation Cluster 34 (IC 34), in Operable Unit A (OU A) of McClellan AFB. The two boreholes, VZMS-A and VZMS-B were instrumented at depths ranging from approximately 6 ft to 113 ft. Instruments were installed in clusters using a custom-made stainless steel cage with a spring-loaded mechanism allowing instruments to be in contact with the well bore wall once in place. Each cluster contains a tensiometer, suction lysimeter, soil gas probe and thermistor for measuring hydraulic potential, liquid- and gas-phase pressure, temperature of the formation and for collecting samples for chemical analyses in both the liquid and gas phases. Neutron probe logging is performed in two separate, smaller borings, VZMS-NP-1 and VZMS-NP-2, to obtain soil moisture content data. Preliminary details of soil gas analyses, laboratory field testing of soil samples, particle size analyses and neutron probe data are presented.
Date: October 31, 1996
Creator: Zawislanski, P.; Faybishenko, B.; James, A.; Freifeld, B. & Salve, R.
Partner: UNT Libraries Government Documents Department