378 Matching Results

Search Results

Advanced search parameters have been applied.

Mechanical Properties of Zircaloy-2

Description: Abstract: The mechanical and physical properties of Zircaloy-2 were determined as a function of five test variables: temperature, grain size, direction to rolling, hydrogen content, and the presence or absence of a notch.
Date: February 1, 1961
Creator: Mehan, R. L. & Wiesinger, F. W.
Partner: UNT Libraries Government Documents Department

Pressure and Thermal Stresses at a Pipe Attachment to a Sphere

Description: Abstract: Design nomographs and equations have been prepared for determining the bending stresses and hoop stresses at the junction of a cylinder and sphere when: (1) Internal pressure exists in the sphere and (2) There is a difference in average temperature between the cylinder and the sphere. A correlation of calculated stresses and photoelastically determined stresses for models with internal pressure is presented.
Date: September 21, 1959
Creator: Deagle, Lorenzo
Partner: UNT Libraries Government Documents Department

Health Physics Report: January-March 1958

Description: Summary: A Laboratory operating and policy guide was issued which requires that all new KAPL, KAPL subcontractor, and AEC contractor personnel receive an indoctrination in radiation protection before beginning work at the Laboratory.
Date: 1958
Partner: UNT Libraries Government Documents Department

Hafnium Resonance Parameter Analysis Using Neutron Capture and Transmission Experiments

Description: The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005 - 200 eV region, with special emphasis on the overlapping {sup 176}Hf and {sup 178}Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations. Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute (RPI) LINAC using the time-of flight technique. {sup 6}Li glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a sixteen section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the {sup 176}Hf and {sup 178}Hf contributions to the 8 eV doublet without saturation. Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 - 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different than previous values. The {sup 176}Hf resonance integral, based on this work, is approximately 73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8 eV resonance, the neutron width presented in this work is more than twice that of the previous value. The calculated elemental ...
Date: February 6, 2007
Creator: Trbovich, M J; Barry, D P; Slovacek, R E; Danon, Y; Block, R C; Francis, N C et al.
Partner: UNT Libraries Government Documents Department

Immiscibility in the Nickel Ferrite-Zinc Ferrite Spinel Binary

Description: Immiscibility in the trevorite (NiFe{sub 2}O{sub 4}) - franklinite (ZnFe{sub 2}O{sub 4}) spinel binary is investigated by reacting 1:1:2 molar ratio mixtures of NiO, ZnO and Fe{sub 2}O{sub 3} in a molten salt solvent at temperatures in the range 400-1000 C. Single phase stability is demonstrated down to about 730 C (the estimated consolute solution temperature, T{sub cs}). A miscibility gap/solvus exists below Tcs. The solvus becomes increasingly asymmetric at lower temperatures and extrapolates to n - values = 0.15, 0.8 at 300 C. A thermodynamic analysis, which accounts for changes in configurational and magnetic ordering entropies during cation mixing, predicts solvus phase compositions at room temperature in reasonable agreement with those determined by extrapolation of experimental results. The delay between disappearance of magnetic ordering above T{sub C} = 590 C (for NiFe{sub 2}O{sub 4}) and disappearance of a miscibility gap at T{sub cs} is explained by the persistence of long-range ordering correlations in a quasi-paramagnetic region above T{sub C}.
Date: June 21, 2006
Creator: Ziemniak, SE; Gaddipati, AR; Sander, PC & Rice, SB
Partner: UNT Libraries Government Documents Department

Influence of Specimen Size on the SCC Growth Rate of Ni-Alloys Exposed to High Temperature Water

Description: Tests were conducted on a single heat of Alloy 600 using compact tension specimens ranging from 50.80 mm (2 inches) in gross thickness (2T) to 10.16 mm (0.4 inches, 0.4T) in gross thickness. Results indicated that at stress intensity factor (K) levels above 55 MPa{radical}m, the growth rate is affected by specimen size in deaerated primary water. The growth rate can be significantly faster in 0.4T and 0.6T (15.24 mm = 0.6 inches in gross thickness) specimens at these elevated K levels compared to 2T specimens. Stress corrosion crack (SCC) growth rates > 6 x 10{sup -7} mm/s were observed at 338 C and 40 cc/kg H{sub 2} in 0.6T and 0.4T specimens at these elevated K levels, although the fracture mode was not significantly affected by the specimen size. The SCC growth rate of 2T specimens under comparable test conditions was {approx}6 x 10{sup -8} mm/s. All of the specimens examined that were tested at K > 55 MPa{radical}m exhibited intergranular failure, although ductile dimples and cracked grains were observed in the 0.4T specimens loaded to the elevated K levels. The effect of specimen size on the crack growth behavior indicated by electric potential drop (EPD) monitoring at K > 55 MPa{radical}m was also reviewed. EPD indicated steady state crack growth during the tests conducted on 1T (25.4 mm = 1.0 inches in gross thickness) and 2T specimens. Steady state crack growth was not indicated by EPD for the 0.4T and 0.6T specimens loaded at K > 55 MPa{radical}m. EPD indicated large jumps in the crack length at discrete points. Initially, it was believed that these large, rapid increases in the crack length corresponded to ductile tearing of uncracked ligaments in the crack wake as the SCC crack advanced. However, examination of the fracture surfaces did not reveal any ...
Date: October 19, 2005
Creator: Richey, E; Morton, D & Moshier, W
Partner: UNT Libraries Government Documents Department

Initial Assessment of Environmental Barrier Coatings for the Prometheus Project

Description: Depending upon final design and materials selections, a variety of engineering solutions may need to be considered to avoid chemical degradation of components in a notional space nuclear power plant (SNPP). Coatings are one engineered approach that was considered. A comprehensive review of protective coating technology for various space-reactor structural materials is presented, including refractory metal alloys [molybdenum (Mo), tungsten (W), rhenium (Re), tantalum (Ta), and niobium (Nb)], nickel (Ni)-base superalloys, and silicon carbide (Sic). A summary description of some common deposition techniques is included. A literature survey identified coatings based on silicides or iridium/rhenium as the primary methods for environmental protection of refractory metal alloys. Modified aluminide coatings have been identified for superalloys and multilayer ceramic coatings for protection of Sic. All reviewed research focused on protecting structural materials from extreme temperatures in highly oxidizing conditions. Thermodynamic analyses indicate that some of these coatings may not be protective in the high-temperature, impure-He environment expected in a Prometheus reactor system. Further research is proposed to determine extensibility of these coating materials to less-oxidizing or neutral environments.
Date: December 15, 2005
Creator: Frederick, M.
Partner: UNT Libraries Government Documents Department

A keff Search Capability in MC21

Description: The MC21 Monte Carlo code is required to permit an individual geometric component or groups of components to be tagged as ''movable'' within some permissible range. Typical examples of such movable components would be control devices such as translating rods or rotating drums. Given this geometric information, a target multiplication factor (k{sub eff}), and a convergence criterion, MC21 will iterate on movable component positions and return a final position that reflects a k{sub eff} close to the target value. An initial version of this capability is demonstrated through modifications to MC21 that sets the geometry data structures for the movable components, calls the main Fortran-95 solver to compute k{sub eff}, and converges on the final position. This approach uses an adaptive batching algorithm that continually increases the accuracy of each successive MC21 k{sub eff} result as the movable geometry approaches the converged position.
Date: January 9, 2007
Creator: Morrow RE, Trumbull TH, Donovan TJ, Sutton TM
Partner: UNT Libraries Government Documents Department

JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

Description: The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long term microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.
Date: January 31, 2006
Creator: Borges, G.
Partner: UNT Libraries Government Documents Department

Liquid metal Flow Meter - Final Report

Description: Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.
Date: January 30, 2007
Creator: Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K
Partner: UNT Libraries Government Documents Department

Magnetic Contribution to Heat Capacity and Entropy of Nicke Ferrite (NiFe2O4)

Description: The heat capacity of nickel ferrite was measured as a function of temperature over the range from 50 to 1200 C using a differential scanning calorimeter. A thermal anomaly was observed at 584.9 C, the expected Curie temperature, T{sub c}. The observed behavior was interpreted by recognizing the sum of three contributions: (1) lattice (vibrational), (2) a spin wave (magnetic) component and (3) a {lambda}-transition (antiferromagnetic-paramagnetic transition) at the Curie temperature. The first was modeled using vibrational frequencies derived from an experimentally-based ir absorption spectrum, while the second was modeled using a spin wave analysis that provided a T{sup 3/2} dependency in the low temperature limit, but incorporated an exchange interaction between cation spins in the octahedral and tetrahedral sites at elevated temperatures, as first suggested by Grimes [15]. The {lambda}-transition was fitted to an Inden-type model which consisted of two truncated power law series in dimensionless temperature (T/T{sub c}). Exponential equality was observed below and above T{sub c}, indicating symmetry about the Curie temperature. Application of the methodology to existing heat capacity data for other transition metal ferrites (AFe{sub 2}O{sub 4}, A = Fe, Co) revealed the same exponential equality, i.e., m = n = 5.
Date: December 15, 2005
Creator: S Ziemniak, L Anovitz, R Castelli
Partner: UNT Libraries Government Documents Department