74 Matching Results

Search Results

Advanced search parameters have been applied.

Methods for testing transport models

Description: Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data.
Date: November 14, 1991
Creator: Singer, C. & Cox, D.
Partner: UNT Libraries Government Documents Department

Numerical methods for molecular dynamics

Description: This report summarizes our research progress to date on the use of multigrid methods for three-dimensional elliptic partial differential equations, with particular emphasis on application to the Poisson-Boltzmann equation of molecular biophysics. This research is motivated by the need for fast and accurate numerical solution techniques for three-dimensional problems arising in physics and engineering. In many applications these problems must be solved repeatedly, and the extremely large number of discrete unknowns required to accurately approximate solutions to partial differential equations in three-dimensional regions necessitates the use of efficient solution methods. This situation makes clear the importance of developing methods which are of optimal order (or nearly so), meaning that the number of operations required to solve the discrete problem is on the order of the number of discrete unknowns. Multigrid methods are generally regarded as being in this class of methods, and are in fact provably optimal order for an increasingly large class of problems. The fundamental goal of this research is to develop a fast and accurate numerical technique, based on multi-level principles, for the solutions of the Poisson-Boltzmann equation of molecular biophysics and similar equations occurring in other applications. An outline of the report is as follows. We first present some background material, followed by a survey of the literature on the use of multigrid methods for solving problems similar to the Poisson-Boltzmann equation. A short description of the software we have developed so far is then given, and numerical results are discussed. Finally, our research plans for the coming year are presented.
Date: January 1, 1991
Creator: Skeel, R.D.
Partner: UNT Libraries Government Documents Department

Spin-mapping of coal structures with ESE and ENDOR

Description: To ENDOR and ESE we have added another advanced EPR technique. VHF-EPR, as a tool with which to observe coal molecular structure, especially organic sulfur. We have constructed a unique VHF EPR instrument operating at the W-band (96 Ghz), one of only two such instruments in the world, and the only one studying coal. We are employing this instrument, as well as collaborating with scientists at Cornell University, who have a 250 GHz spectrometer, to develop a clearer understanding of the relationships between the VHF EPR spectra we observe from Illinois coal and the organic sulfur species present in it. Efforts in this quarter focussed on three area: recruitment of personnel (especially a new postdoctoral fellow) to join the coal research team work on improving the W-band spectrometer, and studies of vitrinite, sporinite, and fusinite macerals at G-band (250 GHz). All three areas have shown good progress. This report will discuss in detail the main features of the W-band instrument, stressing its unique engineering features as well as comparing it to the few other instruments in the world operating in the VHF frequency range (90--250 GHz). Preliminary analysis of the 250 GHz data on macerals obtained by density gradient centrifugation from an Illinois {number sign}6 coal gives the first indication that at the very highest frequencies, there may be a separation of the heteroatom VHF EPR signals into a sulfur and on oxygen-containing component. 15 refs., 9 figs., 1 tab.
Date: December 1, 1990
Creator: Belford, R.L. & Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

Spin-mapping of coal structures with ESE and ENDOR

Description: A nondestructive method to determine the atomic and molecular structures present in the organic (maceral) components of whole coal and coal products has been sought for many years. This program of research is designed to address that analytical need by applying advanced electron magnetic resonance techniques to the determination of coal molecular structure. Structural information has be obtained by using the naturally occurring unpaired electrons in coal as observation posts'' from which to survey neighboring atoms through the electron-nuclear hyperfine interaction. Such an overall approach has been termed ELECTRON SPIN MAPPING of coal structure. New techniques like 2-dimensional ENDOR and ESE spectroscopies and multifrequency EPR, including the world's first S-band ESE spectrometer and one of the first W-band instruments, which we have developed in our laboratory, were employed in the determination. The materials studied were well separated macerals obtained by density gradient centrifugation techniques from Illinois {number sign}6 coals, a well as whole Illinois {number sign}6, {number sign}5, and Argonne Premium Sample Coals. model compounds, chosen to represent molecular structures typical of those believed to exist in coal also were studied by the various electron magnetic resonance (EMR) methods. Utilizing the various EMR methods available in our laboratory, we studied approaches to determine parameters that direcly reflect the atomic and molecular structure of coal. The naturally occurring unpaired electrons in coal were utilized as probes of their local environment, which they reflect through hyperfine interactions with neighboring 1 > 0 nuclei (eg, {sup 1}H, {sup 13}C).
Date: September 1, 1990
Creator: Belford, R.L. & Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

Fundamental quantitative analysis of microbial activity in aquifer bioreclamation

Description: Research continued on aquifer bioreclamation. The project has four primary areas: (1) biodegradation of poorly soluble organic contaminants, (2) dual-limitation kinetics of electron donors and acceptors, (3) two-dimensional modeling of biofilm reactions in nonhomogeneous porous media, and (4) biologically induced clogging in porous media. For each area, this report gives a brief summary of the first year's progress, report this quarter's progress in detail, and indicate plans for future work. 25 refs., 10 figs., 14 tabs.
Date: January 1, 1991
Partner: UNT Libraries Government Documents Department

Cooperative research on the combustion characteristics of cofired desulfurized Illinois coal and char with natural gas

Description: Previous studies at UIUC have shown that natural gas co-firing with coal has the effect of sulfur retention in the ash, and researchers have suggested that co-firing could reduce ash deposition problems. This project will study (1) the overall sulfur retention as a function of combustion conditions (temperature, coal type, residence time, etc.), (2) the effects of types of sulfur species and sulfur transformations (pyrite, organic, sulphates, etc.) on sulfur retention, and (3) the transformation of ash constituents important to fouling (iron, magnesium, potassium, etc.). The Drop Tube Furnace Facility (DTFF) is to be used for this study.
Date: January 1, 1991
Creator: Buckius, R.O.
Partner: UNT Libraries Government Documents Department

Combustion of Illinois coals and chars with natural gas

Description: There are applications where the combined combustion of coal and natural gas offers potential advantages over the use of either coal or natural gas alone. For example, low volatile coals or low volatile chars derived from treatment or gasification processes can be of limited use during to their poor flammability characteristics. However, the use of natural gas in conjunction with the solid fuel can provide the necessary volatiles'' to enhance the combustion. In addition, natural gas provides a clean fuel source of fuel which, in cofiring situations, can extend the usefulness of coals with high sulfur content. The addition of natural gas may reduce SO{sub x} emission through increased sulfur retention in the ash and reduce NO{sub x} emissions by varying local stoichiometry and temperature levels. In this research program, studies of combined coal and natural gas combustion will provide particle ignition, burnout rates and ash characterization, that will help clarify the effect of coal and natural gas and identify the controlling parameters and mechanisms.
Date: January 1, 1991
Creator: Buckius, R.O.
Partner: UNT Libraries Government Documents Department

VHF EPR analysis of organic sulfur in coal

Description: This report covers progress made in the first yearly quarter of a two year investigation using novel, very high frequency electron paramagnetic resonance (VHF EPR) spectroscopy techniques and instrumentation (one of only two W-band spectrometers in existence) developed earlier by these authors, to conduct further qualitative and quantitative studies of heteroatomic organic molecules in coal with particular emphasis on sulfur. Previous W-band (96 GHz) work is being extended to studies of new model compounds as well as coal and desulfurized coal samples. Typically, the model compounds under investigation and their analogues are found in coals as stable free radicals which give rise to an EPR signal. The preparation of radicals from compounds having widely varying structures and physical properties in a stable environment has long been a very difficult task. To address this problem, the refinement of several new and very useful methods of preparing of these stable free radicals in various glasses, at catalytic surfaces, and in solution, are presented in this first report. Free radical generation was accomplished by both UV photolysis as well as chemical oxidation/reduction techniques. By these methods, over 25 new compounds, often commercially derived from coal extracts, have been prepared and studied by conventional X-band EPR (9 GHz). Several representative W-band spectra are also presented.
Date: January 1, 1991
Creator: Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

Helium accumulation effects using bench marked 0-D model

Description: Helium ash'' accumulation is a key issue relative to our ability to achieve a steady-state ignited tokamak. 1-D transport simulations using the BALDUR code have been used to examine the correlation between the global helium particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. In this paper, burn conditions for an ITER-like plasma with various helium edge recycling coefficients are examined.
Date: January 1, 1990
Creator: Hu, S.C. & Miley, G.H.
Partner: UNT Libraries Government Documents Department

Ash accumulation effects using bench marked 0-D model

Description: Ash accumulation is a key issue relative to our ability to achieve D-{sup 3}He ARIES III burn conditions. 1-1/2-d transport simulations using the BALDUR code have been used to examine the correlation between the global ash particle confinement time and the edge exhaust (or recycling) efficiency. This provides a way to benchmark the widely used 0-D model. The burn conditions for an ARIES-III plasma with various ash edge recycling coefficients are examined.
Date: January 1, 1990
Creator: Hu, S.C.; Guo, J.P. & Miley, G.H.
Partner: UNT Libraries Government Documents Department

VHF EPR determination of the chemical forms of organic sulfur in coal

Description: This program addresses the need for innovative approaches to characterize the organic sulfur in Illinois Basin coals. We have developed a very high frequency electron paramagnetic resonance (EPR) spectrometer operating at the W-band of microwave frequencies (96 GHz). This instrument has shown unique sensitivity to heteroatoms in coal, and we believe the technique can be successfully applied for the non-destructive, direct determination of organic sulfur in coal. Preliminary data from Illinois coals and separated macerals indicate that the method also may be able to distinguish aromatic from aliphatic sulfur, and may be useful in assessing the extent of conjugation in aromatic portions of the coal. These high energy spectroscopic techniques, however invariably suffer from the fact that they are not truly non-destructive. By contrast, the low powers and relatively low energy radiation used in magnetic resonance techniques have virtually no effect on the physical structure or chemical composition of coal.
Date: January 1, 1991
Creator: Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

Spin-mapping of coal structures with ESE and ENDOR

Description: Advanced EPR methods have demonstrated cability for study of molecular components (including organic sulfur) in coal. We have constructed a unique Very High Frequency Electron Paramagnetic Resonance (VHF EPR) instrument operating at the W-band (96 GHz), one of only two such instruments in the world, and the only one studying coal. We are employing this instrument, as well as collaborating with scientists at Cornell University who have constructed a 250 GHz EPR spectrometer, to develop a clearer understanding of the relationships between the VHF EPR spectra we observe from Illinois coal and the organic sulfur species present in it. Work this Quarter for this DOE grant (supplemented by a one-year award through the Illinois Center for Research on Sulfur in Coal and also reported to that agency) has focussed on three main area: (1) synthesis and analysis of model systems for thiophenic sulfur species in coal; (2) Electron Spin Echo and VHF EPR of inertinites from an Illinois {number sign}6 coal, as well as evaluation of the sensitivity of the signals from this maceral to oxygen; (3) VHF EPR of iodinated coals. 1 ref., 8 figs.
Date: March 1, 1991
Creator: Belford, R.L. & Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

Neutral transport and helium pumping of ITER

Description: Following the success of the previous years work in modeling the divertor and pump duct of ITER, more 2-D variations of the geometry were introduced. These consisted of reducing the vertical height of the pump duct by 10% and 25%. These changes were folded in to the other geometrical variables. Results show that D/T recycling is basically uneffected by the reduced pump duct size. The He recycling is effected. Less helium is pumped as the pump duct is closed. The helium is still pumped more efficiently than the D/T, but the enhancement factor is reduced. Shifting the profile by 20 cm still produced more pumped helium, but this effect is also lessened as the duct is narrowed.
Date: December 1, 1991
Creator: Ruzic, D.N.
Partner: UNT Libraries Government Documents Department

Genetics of solvent-producing clostridia. Final technical report

Description: Specific Aims 1 and 2 of the original project proposal were specifically addressed during this project period. This involved the development of the pCAK1 phagemid delivery vector, refinement of the C. acetobutylicum electroporation protocol, selection and characterization of the engB cellulase gene from C. cellulovorans and the introduction and successful expression of this heterologous engB gene from C. cellulovorans in C. acetobutylicum. The successful expression of a heterologous engB gene from C. cellulovorans in C. acetobutylicum ATCC 824 has important industrial significance for the utilization of cellulose by this ABE fermentation microorganism. Conversion efficiency testing of the developed recombinant strains in batch and continuous culture (Specific Aim 3) will be carried out once suitable strains have been developed which can utilize cellulose as sole carbon source. The functionality of pCAK1 in the E. coli host system, especially in generating ssDNA, in the absence of impairing E. coli cell viability, together with successful introduction of pCAK1 into C. acetobutylicum and C. perfringens is the basis for the construction of a M13-like genetic system for the genus Clostridium and is expected to allow for more sophisticated molecular genetic analysis of this genus.
Date: June 1, 1997
Partner: UNT Libraries Government Documents Department

Development of advanced direct perception displays for nuclear power plants to enhance monitoring, control and fault management

Description: Traditional Single-Sensor-Single Indicator (SSSI) displays are poorly matched to the cognitive abilities of operators, especially for large and complex systems. It is difficult for operators to monitor very large arrays of displays and controls, and to integrate the information displayed therein. In addition, standard operating procedures (SOPs) are bulky (running to many hundreds of pages) and difficult to use, and operators may become lost. For these reasons, and also because it is becoming increasingly difficult to find replacements for aging hardware components, there is a trend towards computerized graphical interfaces for nuclear power plants (NPPs). There is, however, little rational theory for display design in this domain. This report describes some recent theoretical developments and shows how to develop displays which will greatly reduce the cognitive load on the operator and allow the use of perceptual rather than cognitive mechanisms while using SON and to support state diagnosis and fault management. The report outlines the conceptual framework within which such a new approach could be developed, and provides an example of how the operating procedures for the start-up sequence of a NPP could be realized. A detailed description of a set of displays for a graphical interface for the SON of the feedwater system is provided as an example of how the proposed approach could be realized, and a general account of how it would fit into the overall start-up sequence is given. Examples of {open_quotes}direct perception{close_quotes} or {open_quotes}ecological{close_quotes} configural state space displays to support the use of the proposed direct manipulation SOP interface are provided, and also a critical discussion which identifies some difficulties which may be anticipated should the general approach herein advocated be adopted.
Date: August 1, 1997
Creator: Jones, B.G.; Shaheen, S. & Moray, N.
Partner: UNT Libraries Government Documents Department

Vapor scavenging by atmospheric aerosol particles

Description: Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.
Date: May 1, 1996
Creator: Andrews, E.
Partner: UNT Libraries Government Documents Department

Numerical methods for molecular dynamics. Final report, August 1, 1993--January 31, 1996

Description: The aim of this research is to explore ideas for more efficient numerical integrators for molecular dynamics (MD) and where needed to develop appropriate theoretical tools. Emphasis is on macromolecules and techniques suitable for implementation in the biomolecular dynamics program NAMD. Listed on this report are the main accomplishments during the past two or so years. First are listed algorithmic developments suitable for implementation. Second are listed more theoretical developments helpful for further exploration of new algorithms.
Date: August 1, 1997
Creator: Skeel, R.D.
Partner: UNT Libraries Government Documents Department

[Mechanisms of proton pumping in bacteriorhodopsin]. Progress report

Description: This report consists of two parts namely a brief statement of the progress made during the past four years of the project and more extensive discussion of the current state of understanding of molecular mechanisms controlling the proton pump (bacteriorhodopsin). Detailed descriptions are provided of how the protein undergoes conformational changes on absorbing a photon. Studies are described where the protein structure has been manipulated and the biochemical properties are assessed.
Date: December 31, 1995
Creator: Ebrey, T.G.
Partner: UNT Libraries Government Documents Department

Development of a novel neutron source with applications in calibration and monitoring. Final report

Description: The objective of this research project, development of a unique portable inertial electrostatic confinement (IEC) neutron source (10{sup 6} 2.5-MeV neutrons/second-level) has been achieved. A majority of the experimental work required for the project was reported in the 1993 Annual Report. (The abstract and table of contents for that report arc included here as Appendix A for convenience. Full copies can be obtained upon request to the PI.) Unfortunately, the DOE program providing support for the project was canceled and funding was not available to continue the project in 199495. However, to provide time to explore some innovative potential applications for upgraded versions of the IEC, a no-cost extension of the contract was requested and granted in 1994. This follow-on work, mostly involving conceptual design studies, is reported here.
Date: April 1, 1995
Creator: Miley, G.H.
Partner: UNT Libraries Government Documents Department

Regulation of cell division in higher plants

Description: Cell division is arguably the most fundamental of all developmental processes. In higher plants, mitotic activity is largely confined to foci of patterned cell divisions called meristems. From these perpetually embryonic tissues arise the plant's essential organs of light capture, support, protection and reproduction. Once an adequate understanding of plant cell mitotic regulation is attained, unprecedented opportunities will ensue for analyzing and genetically controlling diverse aspects of development, including plant architecture, leaf shape, plant height, and root depth. The mitotic cycle in a variety of model eukaryotic systems in under the control of a regulatory network of striking evolutionary conservation. Homologues of the yeast cdc2 gene, its catalytic product, p34, and the cyclin regulatory subunits of the MPF complex have emerged as ubiquitous mitotic regulators. We have cloned cdc2-like and cyclin genes from pea. As in other eukaryotic model systems, p34 of Pisum sativum is a subunit of a high molecular weight complex which binds the fission yeast p13 protein and displays histone H1 kinase activity in vitro. Our primary objective in this study is to gain baseline information about the regulation of this higher plant cell division control complex in non-dividing, differentiated cells as well as in synchronous and asynchronous mitotic cells. We are investigating cdc2 and cyclin expression at the levels of protein abundance, protein phosphorylation and quaternary associations.
Date: January 1, 1992
Creator: Jacobs, T.W.
Partner: UNT Libraries Government Documents Department

Spin-mapping of coal structures with ESE and ENDOR

Description: The goals of this program include developing a system for the analysis of the chemical forms of organic sulfur in coal and for study of coal particle surfaces by multifrequency EPR spectroscopy, ENDOR, and ESE spectroscopy and Applying it to coals, to the effects of treatment upon their sulfur-containing organic components, and to related carbonaceous materials (chars and the like). The approach is to utilize the naturally-occurring unpaired electrons in the organic structures of coals as spies to provide molecular structure information, reading out the information with Electron Paramagnetic Resonance (EPR) spectroscopy. Several forms of EPR are employed: Multifrequency continuous-wave (CW) EPR, from 1 GHz to 240 GHz source frequency; electron-nuclear double resonance (ENDOR), in which NMR spectra at paramagnetic centers are obtained by EPR detection; and pulsed EPR, including ESE (Electron Spin Echo) spectroscopy.
Date: December 1, 1991
Creator: Belford, R.L. & Clarkson, R.B.
Partner: UNT Libraries Government Documents Department

(Radiolabeled androgens and progestins as imaging agents for tumors of the prostate and breast)

Description: The specific aims of the previous grant application can be summarized as follows: Synthesize fluorine-substituted progestins from the following high affinity classes: R5020 (promegestone), norgestrel, RU486, and retroprogestins; Synthesize fluorine-substituted androgens from the following high affinity classes: mibolerone, R1881 (metribolone) and 2-oxometribolone; Evaluate the receptor binding and non-specific binding of these fluorosteroids by in vitro binding assays; Develop and optimize fluoride ion substitution reactions suitable for the rapid, efficient and convenient preparation of these fluorosteroids in high specific activity, F-18 labeled form; and Evaluate the target tissue uptake of the F-18 labeled androgens and progestins in experimental animals.
Date: January 1, 1991
Creator: Katzenellenbogen, J.A.
Partner: UNT Libraries Government Documents Department

Methods for testing transport models. [Departments of Nuclear Engineering and Statistics, Univ. of Illinois at Urbana[endash]Champaign]

Description: This report documents progress to date under a three-year contract for developing Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases.
Date: January 5, 1993
Creator: Singer, C. & Cox, D.
Partner: UNT Libraries Government Documents Department

Thin films under chemical stress

Description: The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.
Date: January 1, 1991
Partner: UNT Libraries Government Documents Department