3,962 Matching Results

Search Results

Advanced search parameters have been applied.

Bridging Resilience Engineering and Human Reliability Analysis

Description: There has been strong interest in the new and emerging field called resilience engineering. This field has been quick to align itself with many existing safety disciplines, but it has also distanced itself from the field of human reliability analysis. To date, the discussion has been somewhat one-sided, with much discussion about the new insights afforded by resilience engineering. This paper presents an attempt to address resilience engineering from the perspective of human reliability analysis (HRA). It is argued that HRA shares much in common with resilience engineering and that, in fact, it can help strengthen nascent ideas in resilience engineering. This paper seeks to clarify and ultimately refute the arguments that have served to divide HRA and resilience engineering.
Date: June 1, 2010
Creator: Boring, Ronald L.
Partner: UNT Libraries Government Documents Department

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects

Description: The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated ...
Date: September 1, 2010
Creator: Breckenridge, Robert P.; Wood, Thomas R. & Renner, Joel
Partner: UNT Libraries Government Documents Department

Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

Description: The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.
Date: October 1, 2010
Creator: Schrader, Bradley J.
Partner: UNT Libraries Government Documents Department


Description: Nuclear power has been considered for space applications since the 1960s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors/ rocket-engines in the Rover/NERVA programs. However, changes in environmental laws may make the redevelopment of the nuclear rocket more difficult. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel form significantly different from NERVA may be needed to ensure public support. The Center for Space Nuclear Research (CSNR) is pursuing development of tungsten based fuels for use in a NTR, for a surface power reactor, and to encapsulate radioisotope power sources. The CSNR Summer Fellows program has investigated the feasibility of several missions enabled by the NTR. The potential mission benefits of a nuclear rocket, historical achievements of the previous programs, and recent investigations into alternatives in design and materials for future systems will be discussed.
Date: September 1, 2001
Creator: O'Brien, Robert C.
Partner: UNT Libraries Government Documents Department

Highly Integrated Quality Assurance – An Empirical Case

Description: Highly Integrated Quality Assurance – An Empirical Case Drake Kirkham1, Amy Powell2, Lucas Rich3 1Quality Manager, Radioisotope Power Systems (RPS) Program, Idaho National Laboratory, P.O. Box 1625 M/S 6122, Idaho Falls, ID 83415-6122 2Quality Engineer, RPS Program, Idaho National Laboratory 3Quality Engineer, RPS Program, Idaho National Laboratory Contact: Voice: (208) 533-7550 Email: Drake.Kirkham@inl.gov Abstract. The Radioisotope Power Systems Program of the Idaho National Laboratory makes an empirical case for a highly integrated Quality Assurance function pertaining to the preparation, assembly, testing, storage and transportation of 238Pu fueled radioisotope thermoelectric generators. Case data represents multiple campaigns including the Pluto/New Horizons mission, the Mars Science Laboratory mission in progress, and other related projects. Traditional Quality Assurance models would attempt to reduce cost by minimizing the role of dedicated Quality Assurance personnel in favor of either functional tasking or peer-based implementations. Highly integrated Quality Assurance adds value by placing trained quality inspectors on the production floor side-by-side with nuclear facility operators to enhance team dynamics, reduce inspection wait time, and provide for immediate, independent feedback. Value is also added by maintaining dedicated Quality Engineers to provide for rapid identification and resolution of corrective action, enhanced and expedited supply chain interfaces, improved bonded storage capabilities, and technical resources for requirements management including data package development and Certificates of Inspection. A broad examination of cost-benefit indicates highly integrated Quality Assurance can reduce cost through the mitigation of risk and reducing administrative burden thereby allowing engineers to be engineers, nuclear operators to be nuclear operators, and the cross-functional team to operate more efficiently. Applicability of this case extends to any high-value, long-term project where traceability and accountability are determining factors.
Date: February 1, 2011
Creator: Kirkham, Drake; Powell, Amy & Rich, Lucas
Partner: UNT Libraries Government Documents Department

How Many Performance Shaping Factors are Necessary for Human Reliability Analysis?

Description: It has been argued that human reliability analysis (HRA) has expended considerable energy on creating detailed representations of human performance through an increasingly long list of performance shaping factors (PSFs). It is not clear, however, to what extent this refinement and expansion of PSFs has enhanced the quality of HRA. Indeed, there is considerable range in the number of PSFs provided by individual HRA methods, ranging from single factor models such as time-reliability curves, up to 50 or more PSFs in some current HRA models. The US Nuclear Regulatory Commission advocates 15 PSFs in its HRA Good Practices (NUREG-1792), while its SPAR-H method (NUREG/CR-6883) espouses the use of eight PSFs and its ATHEANA method (NUREG-1624) features an open-ended number of PSFs. The apparent differences in the optimal number of PSFs can be explained in terms of the diverse functions of PSFs in HRA. The purpose of this paper is to explore the role of PSFs across different stages of HRA, including identification of potential human errors, modeling of these errors into an overall probabilistic risk assessment, quantifying errors, and preventing errors.
Date: June 1, 2010
Creator: Boring, Ronald L.
Partner: UNT Libraries Government Documents Department

New In-pile Instrumentation to Support Fuel Cycle Research and Development

Description: New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking these technologies. A preliminary ranking of candidate technologies is performed to illustrate the path forward for developing real-time ...
Date: January 1, 2011
Creator: Rempe, J.; MacLean, H.; Schley, R.; Hurley, D.; Daw, J.; Taylor, S. et al.
Partner: UNT Libraries Government Documents Department

The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark - FY 2006 Annual Report

Description: This document describes the recent developments of the PEBBED code suite and its application to the PBMR-400 Coupled Code Benchmark. This report addresses an FY2006 Level 2 milestone under the NGNP Design and Evaluation Methods Work Package. The milestone states "Complete a report describing the results of the application of the integrated PEBBED code package to the PBMR-400 coupled code benchmark". The report describes the current state of the PEBBED code suite, provides an overview of the Benchmark problems to which it was applied, discusses the code developments achieved in the past year, and states some of the results attained. Results of the steady state problems generated by the PEBBED fuel management code compare favorably to the preliminary results generated by codes from other participating institutions and to similar non-Benchmark analyses. Partial transient analysis capability has been achieved through the acquisition of the NEM-THERMIX code from Penn State University. Phase I of the task has been achieved through the development of a self-consistent set of tools for generating cross sections for design and transient analysis and in the successful execution of the steady state benchmark exercises.
Date: September 1, 2006
Partner: UNT Libraries Government Documents Department


Description: The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.
Date: August 1, 2005
Creator: Petkovic, Lucia M.; Ginosar, Daniel M.; Burch, Kyle C. & Rollins, Harry W.
Partner: UNT Libraries Government Documents Department

Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007

Description: Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management
Date: April 1, 2007
Creator: Moore, Karen A
Partner: UNT Libraries Government Documents Department

Cyber Incidents Involving Control Systems

Description: The Analysis Function of the US-CERT Control Systems Security Center (CSSC) at the Idaho National Laboratory (INL) has prepared this report to document cyber security incidents for use by the CSSC. The description and analysis of incidents reported herein support three CSSC tasks: establishing a business case; increasing security awareness and private and corporate participation related to enhanced cyber security of control systems; and providing informational material to support model development and prioritize activities for CSSC. The stated mission of CSSC is to reduce vulnerability of critical infrastructure to cyber attack on control systems. As stated in the Incident Management Tool Requirements (August 2005) ''Vulnerability reduction is promoted by risk analysis that tracks actual risk, emphasizes high risk, determines risk reduction as a function of countermeasures, tracks increase of risk due to external influence, and measures success of the vulnerability reduction program''. Process control and Supervisory Control and Data Acquisition (SCADA) systems, with their reliance on proprietary networks and hardware, have long been considered immune to the network attacks that have wreaked so much havoc on corporate information systems. New research indicates this confidence is misplaced--the move to open standards such as Ethernet, Transmission Control Protocol/Internet Protocol, and Web technologies is allowing hackers to take advantage of the control industry's unawareness. Much of the available information about cyber incidents represents a characterization as opposed to an analysis of events. The lack of good analyses reflects an overall weakness in reporting requirements as well as the fact that to date there have been very few serious cyber attacks on control systems. Most companies prefer not to share cyber attack incident data because of potential financial repercussions. Uniform reporting requirements will do much to make this information available to Department of Homeland Security (DHS) and others who require it. This report summarizes ...
Date: October 1, 2005
Creator: Turk, Robert J.
Partner: UNT Libraries Government Documents Department

Improved Water Flooding through Injection Brine Modification

Description: Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.
Date: January 1, 2003
Creator: Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman & Wyoming), (U of
Partner: UNT Libraries Government Documents Department

Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

Description: Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at today’s output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.
Date: October 1, 2008
Creator: Robertson, Eric P.
Partner: UNT Libraries Government Documents Department

High Repetition Rate, LINAC-Based Nuclear Resonance Fluorescence FY 2008 Final Report

Description: This summarizes the first year of a multi-laboratory/university, multi-year effort focusing on high repetition rate, pulsed LINAC-based nuclear resonance fluorescence (NRF) measurements. Specifically, this FY2008 effort centered on experimentally assessing NRF measurements using pulsed linear electron accelerators, operated at various repetition rates, and identifying specific detection requirements to optimize such measurements. Traditionally, interest in NRF as a detection technology, which continues to receive funding from DHS and DOE/NA-22, has been driven by continuous-wave (CW), Van de Graff-based bremsstrahlung sources. However, in addition to the relatively sparse present-day use of Van de Graff sources, only limited NRF data from special nuclear materials has been presented; there is even less data available regarding shielding effects and photon source optimization for NRF measurements on selected nuclear materials.
Date: December 1, 2008
Creator: Watson, Scott M; Kinlaw, Mathew T; Jones, James L; Hunt, Alan W. & Warren, Glen A.
Partner: UNT Libraries Government Documents Department

High Level Waste Disposal System Optimization

Description: The high level waste (HLW) disposal system consists of the Yucca Mountain Facility (YMF) and waste product (e.g. glass) generation facilities. Responsibility for management is shared between the U. S. Department of Energy (DOE) Offices of Civilian Radioactive Waste Management (DOE-RW) and Environmental Management (DOE-EM). The DOE-RW license application and the Waste Acceptance System Requirements Document (WASRD), as well as the DOE-EM Waste Acceptance Product Specification for Vitrified High Level Waste Forms (WAPS) govern the overall performance of the system. This basis for HLW disposal should be reassessed to consider waste form and process technology research and development (R&D), which have been conducted by DOE-EM, international agencies (i.e. ANSTO, CEA), and the private sector; as well as the technical bases for including additional waste forms in the final license application. This will yield a more optimized HLW disposal system to accelerate HLW disposition, more efficient utilization of the YMF, and overall system cost reduction.
Date: February 1, 2005
Creator: Gombert, Dirk; Connolly, M.; Roach, J. & Holtzscheiter, W.
Partner: UNT Libraries Government Documents Department

Advanced Fuel Cycle Initiative AFC-1D, AFC-1G and AFC-1H Irradiation Report

Description: The U. S. Advanced Fuel Cycle Initiative (AFCI) seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products, thereby dramatically decreasing the volume of material requiring disposition and the long-term radiotoxity and heat load of high-level waste sent to a geologic repository. The AFC-1 irradiation experiments on transmutation fuels are expected to provide irradiation performance data on non-fertile and low-fertile fuel forms specifically, irradiation growth and swelling, helium production, fission gas release, fission product and fuel constituent migration, fuel phase equilibria, and fuel-cladding chemical interaction. Contained in this report are the to-date physics evaluations performed on three of the AFC-1 experiments; AFC-1D, AFC-1G and AFC-1H. The AFC-1D irradiation experiment consists of metallic non-fertile fuel compositions with minor actinides for potential use in accelerator driven systems and AFC-1G and AFC-1H irradiation experiments are part of the fast neutron reactor fuel development effort. These experiments are high burnup analogs to previously irradiated experiments and are to be irradiated to = 20 atom % burnup. Results of the evaluations show that AFC-1D will remain in the ATR for approximately 100 additional effective full power days (EFPDs), and AFC-1G and AFC-1H for approximately 300 additional EFPDs in order to reach the desired programmatic burnup. The specific irradiation schedule for these tests will be determined based on future physics evaluations and all results will be documented in subsequent reports.
Date: September 1, 2005
Creator: Utterbeck, Debra J. & Chang, Gray
Partner: UNT Libraries Government Documents Department

Advanced Technology Development Program for Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report

Description: The Advanced Technology Development Program has completed performance testing of the second generation of lithium-ion cells (i.e., Gen 2 cells). The 18650-size Gen 2 cells, with a baseline and variant chemistry, were distributed over a matrix consisting of three states-of-charge (SOCs) (60, 80, and 100% SOC), four temperatures (25, 35, 45, and 55°C), and three life tests (calendar-, cycle-, and accelerated-life). The calendar- and accelerated-life cells were clamped at an open-circuit voltage corresponding to the designated SOC and were subjected to a once-per-day pulse profile. The cycle-life cells were continuously pulsed using a profile that was centered around 60% SOC. Life testing was interrupted every four weeks for reference performance tests (RPTs), which were used to quantify changes in cell degradation as a function of aging. The RPTs generally consisted of C1/1 and C1/25 static capacity tests, a low-current hybrid pulse power characterization test, and electrochemical impedance spectroscopy. The rate of cell degradation generally increased with increasing test temperature, and SOC. It was also usually slowest for the calendar-life cells and fastest for the accelerated-life cells. Detailed capacity-, power-, and impedance-based performance results are reported.
Date: July 1, 2006
Creator: Christophersen, Jon P.; Bloom, Ira; Thomas, Edward V.; Gering, Kevin L.; Henriksen, Gary L.; Battaglia, Vincent S. et al.
Partner: UNT Libraries Government Documents Department

Active, Non-Intrusive Inspection Technologies for Homeland Defense

Description: Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.
Date: June 1, 2003
Creator: Jones, James L.
Partner: UNT Libraries Government Documents Department

Explosive Detection and Identification by PGNAA

Description: The goal of this project was to determine the feasibility of using field-portable prompt gamma-ray neutron activation analysis (PGNAA) to detect and identify explosives in improvised nuclear devices (INDs). The studies were carried out using the Monte Carlo N-Particle (MCNP) code developed at Los Alamos National Laboratory. The model results were tested experimentally using explosive simulants and the PINS PGNAA system developed at Idaho National Engineering and Environmental Laboratory (INEEL). The results of the MCNP calculations and PINS measurements are presented in this report. The calculations and measurements were in good agreement and indicate that most explosives are readily distinguishable from one another.
Date: November 1, 2004
Creator: Seabury, E.H. & Caffrey, A.J.
Partner: UNT Libraries Government Documents Department

Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility

Description: This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.
Date: July 1, 2008
Creator: URS, Washington Division of
Partner: UNT Libraries Government Documents Department

Guidance for Safety Analysis of Other Than Nuclear Facilities/Activities at the INEEL

Description: The U.S. Department of Energy Idaho Operations Office (DOE-ID) provided guidance per DOE-ID Orders 420.C, "Safety Basis Review and Approval Process," and 420.D, "Requirements and Guidance for Safety Analysis," for conducting safety analysis for facilities and activities that do not meet either the nuclear facility criteria or the criteria for not requiring additional safety analysis (NRASA). These facilities and activities are thus designated as "other than nuclear" (OTN), and hazard analyses are performed using a graded approach. This graded approach is done in accordance with DOE-ID Order 420.D. DOE-ID guidance is used to format these OTN facilities and activities into 3-chapter documents, rather than the 17-chapter format specified in DOE-STD-3009-94, "Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports."
Date: June 1, 2002
Creator: Swanson, Douglas Sidney & Perry, Scott William
Partner: UNT Libraries Government Documents Department

General and Localized Corrosion of Borated Stainless Steels

Description: The Transportation, Aging and Disposal (TAD) canister-based system is being proposed to transport and store spent nuclear fuel at the Monitored Geologic Repository (MGR) located at Yucca Mountain, Nevada. The preliminary design of this system identifies borated stainless steel as the neutron absorber material that will be used to fabricate fuel basket inserts for nuclear criticality control. This paper discusses corrosion test results for verifying the performance of this material manufactured to the requirements of ASTM A887, Grade A, under the expected repository conditions.
Date: March 1, 2008
Creator: Lister, T.E.; Mizia, Ronald E.; Erickson, A.W.; Trowbridge, T.L. & Matteson, B. S.
Partner: UNT Libraries Government Documents Department

Geophysical Investigations of Archaeological Resources in Southern Idaho

Description: At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.
Date: October 1, 2005
Creator: Pace, Brenda Ringe; Heath, Gail; Scott, Clark & McDaniel, Carlan
Partner: UNT Libraries Government Documents Department