645 Matching Results

Search Results

Advanced search parameters have been applied.

Issue Management Risk Ranking Systems

Description: Thousands of safety issues have been collected on-line at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the Issue Management Plan. However, there has been no established approach to prioritize collected and future issues. The authors developed a methodology, based on hazards assessment, to identify and risk rank over 5000 safety issues collected at INEEL. This approach required that it was easily applied and understandable for site adaptation and commensurate with the Integrated Safety Plan. High-risk issues were investigated and mitigative/preventive measures were suggested and ranked based on a cost-benefit scheme to provide risk-informed safety measures. This methodology was consistent with other integrated safety management goals and tasks providing a site-wide risk-informed decision tool to reduce hazardous conditions and focus resources on high-risk safety issues. As part of the issue management plan, this methodology was incorporated at the issue collection level and training was provided to management to better familiarize decision-makers with concepts of safety and risk. This prioritization methodology and issue dissemination procedure will be discussed. Results of issue prioritization and training efforts will be summarized. Difficulties and advantages of the process will be reported. Development and incorporation of this process into INEEL's lessons learned reporting and the site-wide integrated safety management program will be shown with an emphasis on establishing self reliance and ownership of safety issues.
Date: June 1, 1999
Creator: Marshall, F. M.; Grant, G. M.; Stromberg, H. M. & Novack, S. D.
Partner: UNT Libraries Government Documents Department

Summary of activities at the Engineered Barriers Test Facility, October 1, 1995 to January 31, 1997, and initial data

Description: Replicates of two engineered barrier designs (a thick soil barrier and a bio/capillary barrier) were constructed in the test plots of the facility. Prior to placement of any soil in the test plots, instruments were calibrated and attached to plot instrument towers, which were then installed in the test plots. Soil from Spreading Area B was installed in the test plots in lifts and compacted. Instruments attached to the instrument tower were placed in shallow trenches dug in the lifts and buried. Each instrument was checked to make sure it functioned prior to installation of the next lift. Soil samples were collected from each lift in one plot during construction for later determination of physical and hydraulic properties. After completion of the test plots, the data acquisition system was finalized, and data collection began. Appropriate instrument calibration equations and equation coefficients are presented, and data reduction techniques are described. Initial data show test plot soils drying throughout the summer and early fall. This corresponds to low rainfall during this period. Infiltration of water into the test plots was first detected around mid-November with several subsequent episodes in December. Infiltration was verified by corresponding measurements from several different instruments [time domain reflectometry (TDR), neutron probe, thermocouple psychrometers, and heat dissipation sensors]. Tensiometer data does not appear to corroborate data from the other instruments. Test plots were warmer on the side closest to the access trench indicating a temperature effect from the trench. This resulted in greater soil moisture freezing with less and shallower infiltration on the far side of the plots than on the side closest to the trench. At the end of this monitoring period, infiltration in all but two of the test plots has reached the 155-cm depth. Infiltration in test plots B2 and S3 has reached only the ...
Date: March 1, 1997
Creator: Porro, I. & Keck, K.N.
Partner: UNT Libraries Government Documents Department

Development, calibration, and predictive results of a simulator for subsurface pathway fate and transport of aqueous- and gaseous-phase contaminants in the Subsurface Disposal Area at the Idaho National Engineering and Environmental Laboratory

Description: This document presents the development, calibration, and predictive results of a simulation study of fate and transport of waste buried in the Subsurface Disposal Area (SDA) (which is hereafter referred to as the SDA simulation study). This report builds on incorporates a previous report that dealt only with the calibration of a flow model for simulation of water movement beneath the SDA (Magnuson and Sondrup 1996). The primary purpose of the SDA simulation study was to perform fate and transport calculations to support the IRA. A secondary purpose of the SDA simulation study was to be able to use the model to evaluate possible remediation strategies and their effects on flow and transport in the OU 7-13/14 feasibility study.
Date: July 1, 1998
Creator: Magnuson, S.O. & Sondrup, A.J.
Partner: UNT Libraries Government Documents Department

Recent Progress on the Standardized DOE Spent Nuclear Fuel Canister

Description: The Department of Energy (DOE) has developed a set of containers for the handling, interim storage, transportation, and disposal in the national repository of DOE spent nuclear fuel (SNF). This container design, referred to as the standardized DOE SNF canister or standardized canister, was developed by the Department's National Spent Nuclear Fuel Storage Program (NSNFP) working in conjunction with the Office of Civilian Radioactive Waste Management (OCRWM) and the DOE spent fuel sites. This canister had to have a standardized design yet be capable of accepting virtually all of the DOE SNF, be placed in a variety of storage and transportation systems, and still be acceptable to the repository. Since specific design details regarding the storage, transportation, and repository disposal of DOE SNF were not finalized, the NSNFP recognized the necessity to specify a complete DOE SNF canister design. This allowed other evaluations of canister performance and design to proceed as well as providing standardized canister users adequate information to proceed with their work. This paper is an update of a paper presented to the 1999 American Nuclear Society of Mechanical Engineers (ASME) Pressure Vessels and Piping (PVP) Conference. It discusses recent progress achieved in various areas to enhance acceptance of this canister not only by the DOE complex but also fabricators and regulatory agencies.
Date: May 7, 2002
Creator: Morton, D.K.; Snow, S.D.; Rahl, T.E.; Hill, T.J. (INEEL) & Morissette, R.P. (Beckman and Associates, Inc.)
Partner: UNT Libraries Government Documents Department

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

Description: The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.
Date: May 14, 2002
Creator: Creed, R.J. & Laney, P.T.
Partner: UNT Libraries Government Documents Department

Experiment Safety Assurance Package for the 40- to 50-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-Hole Positions in the Advanced Test Reactor

Description: This experiment safety assurance package (ESAP) is a revision of the last MOX ESAP issued in February 2001(Khericha 2001). The purpose of this revision is to identify the changes in the loading pattern and to provide a basis to continue irradiation up to {approx}42 GWd/MT burnup (+ 2.5%) as predicted by MCNP (Monte Carlo N-Particle) transport code before the preliminary postirradiation examination (PIE) results for 40 GWd/MT burnup are available. Note that the safety analysis performed for the last ESAP is still applicable and no additional analysis is required (Khericha 2001). In July 2001, it was decided to reconfigure the test assembly using the loading pattern for Phase IV, Part 3, at the end of Phase IV, Part 1, as the loading pattern for Phase IV, Parts 2 and 3. Three capsule assemblies will be irradiated until the highest burnup capsule assembly accumulates: {approx}50 GWd/MT burnup, based on the MCNP code predictions. The last ESAP suggests that at the end of Phase IV, Part 1, we remove the two highest burnup capsule assemblies ({at} {approx}40 GWd/MT burnup) and send them to ORNL for PIE. Then, irradiate the test assembly using the loading pattern for Phase IV, Part 2, until the highest burnup capsule reaches {approx}40 GWd/MT burnup per MCNP-predicted values.
Date: June 30, 2002
Creator: Khericha, S.T.
Partner: UNT Libraries Government Documents Department

Thermodynamic Phase And Chemical Equilibrium At 0-110 C For The H+-K+-Na+-Cl--H2O System Up To 16 Molal And The HNO3-H2O System Up To 20 Molal Using An Association-Based Pitzer Model Compatible With ASPEN Plus

Description: A status is presented of the parameterization during FY2003 of an association-based Pitzer model to simulate chemical and phase equilibria of acid-chloride-nitrate-mercury aqueous electrolyte systems at 0-100 C within the industry-standard process simulator, ASPEN Plus. Compatibility with ASPEN Plus requires that the Pitzer model used be limited to the third virial coefficient and have the values of b and a1 as originally proposed by Pitzer. Two aqueous models for 0-110 C at atmospheric pressure were parameterized in FY03. The model for the aqueous H+-K+-Na+-Cl- system is applicable for 0-16 molal, and the HNO3-H2O for 0-20 molal. An association-based Pitzer activity coefficient model is combined with Henry's law to predict activity/osmotic coefficient and VLE. The chloride model also predicts KCl and NaCl solubility, while the nitric acid model has the unique capability of predicting extent of dissociation with an average absolute deviation of 1.43%. The association-based approach presented here extends the utility of the molality-based Pitzer model past 6 molal to predict activity/osmotic coefficients up to 16-20 molal. The association-based approach offers the additional benefits of predicting extent of dissociation and of allowing the Pitzer model to be fully utilized in commercial simulators, such as ASPEN Plus, that require accounting for association to implement Henry's law. The Pitzer models presented here provide the chemical process simulation engineer with a superior alternative to the Electrolyte NRTL model that can easily be used in ASPEN Plus.
Date: September 26, 2003
Creator: Nichols,T.T. & Taylor,D.D.
Partner: UNT Libraries Government Documents Department

Federal Geothermal Research Program Update - Fiscal Year 2001

Description: This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.
Date: August 31, 2002
Creator: Laney, P.T.
Partner: UNT Libraries Government Documents Department

Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste

Description: The technical information required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) is presented. The objective of the modeling effort is to provide the predictive capability required to optimize an entire treatment train and assess system-wide impacts of local changes at individual unit operations, with the aim of reducing the schedule and cost of future process/facility design efforts. All the information required a priori for engineers to construct and link unit operation modules in a commercial software simulator to represent the alternative treatment trains is presented. The information is of a mid- to high-level nature and consists of the following: (1) a description of twenty-four specific unit operations--their operating conditions and constraints, primary species and key outputs, and the initial modeling approaches that will be used in the first year of the simulation's development; (2) three potential configurations of the unit operations (trains) and their interdependencies via stream connections; and (3) representative stream compositional makeups.
Date: February 21, 2002
Creator: Nichols, T.T.; Taylor, D.D.; Lauerhass, L. & Barnes, C.M.
Partner: UNT Libraries Government Documents Department

Radiological Characterization Methodology for INEEL-Stored Remote-Handled Transuranic (RH TRU) Waste from Argonne National Laboratory-East

Description: An Acceptable Knowledge (AK)-based radiological characterization methodology is being developed for RH TRU waste generated from ANL-E hot cell operations performed on fuel elements irradiated in the EBR-II reactor. The methodology relies on AK for composition of the fresh fuel elements, their irradiation history, and the waste generation and collection processes. Radiological characterization of the waste involves the estimates of the quantities of significant fission products and transuranic isotopes in the waste. Methods based on reactor and physics principles are used to achieve these estimates. Because of the availability of AK and the robustness of the calculation methods, the AK-based characterization methodology offers a superior alternative to traditional waste assay techniques. Using the methodology, it is shown that the radiological parameters of a test batch of ANL-E waste is well within the proposed WIPP Waste Acceptance Criteria limits.
Date: January 14, 2003
Creator: Kuan, P. & Bhatt, R.N.
Partner: UNT Libraries Government Documents Department

Soil Stabilization and Revegetation at the INEEL Recommendations for Improvement

Description: Soil stabilization for the INEEL Stormwater Pollution Prevention Plan (SWPPP) has mostly been by revegetation, but has experienced only limited success. The purpose of this report is to discuss issues associated with revegetation failures and to explore possible remedies.
Date: March 24, 2003
Creator: Blew, R.D.; Jackson, M.R. & Forman, A.D.
Partner: UNT Libraries Government Documents Department

Near-Surface Engineered Environmental Barrier Integrity

Description: The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined.
Date: May 15, 2002
Creator: Piet, S. J. & Breckenridge, R. P.
Partner: UNT Libraries Government Documents Department

Evaluation of Calcine Disposition Path Forward

Description: This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward.
Date: February 26, 2003
Creator: Birrer, S.A. & Heiser, M.B.
Partner: UNT Libraries Government Documents Department

Development of Neutron Probes for Characterization of Hazardous Materials in the Sub-surface Medium

Description: Neutron probes are being developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the detection, identification and quantification of hazardous materials in the ground. Such materials include plutonium, uranium, americium, chlorine and fluorine. Both a Neutron Gamma (NG) probe and a Prompt Fission Neutron (PFN) probe are being developed. The NG probe is used primarily for nuclide identification and quantification measurements. The PFN is used mostly for the detection and measurement of fissile material, but also for the determination of thermal neutron macroscopic absorption cross sections of the various elements comprising the ground matrix. Calibration of these probes will be carried out at the INEEL using an indoor facility that has been designed for this activity.
Date: May 15, 2002
Creator: Keegan, R.P.; McGrath, C.A. & Lopez, J.C.
Partner: UNT Libraries Government Documents Department

Waste In-Situ Stabilization/Entombment Research and Development Project

Description: The technical basis and stakeholder acceptance of entombment technology is necessary before entombment becomes a decontamination and decommissioning (D and D) option for nuclear reactors. The authors present a research and development (R and D) approach addressing technical basis and stakeholder acceptance of entombment technology. The approach includes a consortium and the conceptual R and D program.
Date: August 29, 2000
Creator: Vernon, D.K.; Birk, S.M. & Hanson, R.G.
Partner: UNT Libraries Government Documents Department

TWR Bench-Scale Steam Reforming Demonstration

Description: The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.
Date: May 21, 2003
Creator: Marshall, D.W. & Soelberg, N.R.
Partner: UNT Libraries Government Documents Department

Hydrogen Gas Generation Model for Fuel-Based Remote-Handled Transuranic Waste Stored at the INEEL

Description: The Idaho National Environmental and Engineering Laboratory (INEEL) initiated efforts to calculate the hydrogen gas generation in remote-handled transuranic (RH-TRU) containers in order to evaluate continued storage of unvented RH-TRU containers in vaults and to identify any potential problems during retrieval and aboveground storage. A computer code is developed to calculate the hydrogen concentration in the stored RH-TRU waste drums for known configuration, waste matrix, and radionuclide inventories as a function of time.
Date: January 14, 2003
Creator: Khericha, S.; Bhatt, R. & Liekhus, K.
Partner: UNT Libraries Government Documents Department

Gallium Safety in the Laboratory

Description: A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.
Date: May 7, 2003
Creator: Cadwallader, L.C.
Partner: UNT Libraries Government Documents Department

Hydrologic Behavior of Two Engineered Barriers Following Extreme Wetting

Description: Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage- evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary/biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared to pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared to thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.
Date: September 30, 2000
Creator: Porro, I.
Partner: UNT Libraries Government Documents Department

Source Release Modeling for the Idaho National Engineering and Environmental Laboratory's Subsurface Disposal Area

Description: A source release model was developed to determine the release of contaminants into the shallow subsurface, as part of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) evaluation at the Idaho National Engineering and Environmental Laboratory's (INEEL) Subsurface Disposal Area (SDA). The output of the source release model is used as input to the subsurface transport and biotic uptake models. The model allowed separating the waste into areas that match the actual disposal units. This allows quantitative evaluation of the relative contribution to the total risk and allows evaluation of selective remediation of the disposal units within the SDA.
Date: May 13, 2002
Creator: Becker, B.H.
Partner: UNT Libraries Government Documents Department

Underground Corrosion of Activated Metals in an Arid Vadose Zone Environment

Description: The subsurface radioactive disposal site located at the Idaho National Engineering and Environmental Laboratory contains neutron-activated metals from nonfuel nuclear-reactor- core components. A long-term corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The tests use nonradioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, Type 304L stainless steel, Type 315L stainless steel, nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6, and a zirconium alloy, (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) (the proposed material for the high- integrity disposal containers) are also included in the test program. This paper briefly describes the test program and presents the early corrosion rate results after 1 year and 3 years of underground exposure.
Date: October 24, 2001
Creator: Adler Flitton, M.K; Mizia, R.E. & Bishop, C.W.
Partner: UNT Libraries Government Documents Department

The Environmental Management Core Laboratories - A Collaborative Effort to Enhance Cleanup

Description: Acknowledging that the magnitude and diversity of the critical issues facing the DOE-EM cannot be addressed by a single institution, the Laboratory Directors established the EM Core Laboratories. This collaborative network ensures that the best available resources are addressing environmental quality issues through the introduction of critical new science and technology. Based upon the Top-to-Bottom Review, the EM program is shifting the focus of its cleanup efforts to accelerate schedules to reduce cost and the most significant risks. To facilitate this acceleration, the Office of Science and Technology has restructured their research and development program towards two new thrusts. These thrusts, Closure Site Support and Alternative Development, are aimed at the high priority needs to support the re-baselined cleanup program. The EM Core Laboratories are well positioned to ensure the successful implementation of this new direction.
Date: May 16, 2002
Creator: Birrer, S. A.; Frandsen, G. B. & Kearns, P. K.
Partner: UNT Libraries Government Documents Department

Using Decision Analysis in Evaluation and Prioritization of Technologies for Long Term Stewardship

Description: The purpose of this paper is to describe a systematic approach to assess and prioritize technology concepts and systems for future research and development (R and D) funding. This paper discusses the analysis and rationale used in developing an evaluation process to assist those engaged in prioritizing technologies. This paper will explain the developed evaluation process, discuss the methodology, and summarize the rationale underlying the process.
Date: May 13, 2002
Creator: Nadeau, J.L.; Byers, J.; Harbour, J.L.; Hill, S.; Nickelson, R.A.; Richardson, J.G. et al.
Partner: UNT Libraries Government Documents Department

Preliminary Efforts to Couple TETRAD with Geophysics Models

Description: The Geothermal Program at the Idaho National Engineering and Environmental Laboratory is enhancing our reservoir simulation capabilities by writing new subroutines with TETRAD that write necessary files for use with SAIC's geophysics models, including DC Resistivity, SP, and microgravity. This is part of long-term efforts to develop reservoir models that take advantage of various observations that are - or can be - made on both existing fields or during exploration efforts. These new routines will be made available to the TETRAD user community in 2002 through the next release of TETRAD 2002.
Date: February 19, 2002
Creator: Shook, G.M. & Renner, J.L.
Partner: UNT Libraries Government Documents Department