33 Matching Results

Search Results

Advanced search parameters have been applied.

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 24, July 1, 1994--September 30, 1994

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.
Date: April 1, 1995
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies - froth flotation. Quarterly technical progress report No. 23, April 1, 1994--June 30, 1994

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.
Date: April 1, 1995
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies -- froth flotation. Quarterly technical progress report No. 20, July 1, 1993--September 30, 1993

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2}, per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals y advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This document is a quarterly report which provides a summary of the technical work undertaken during this period. A brief description of the work done prior to this report is also provided.
Date: December 31, 1993
Partner: UNT Libraries Government Documents Department

LIFAC demonstration at Richmond Power and Light Whitewater Valley Unit No. 2. Final report, Volume 1 - public design

Description: This report discusses the demonstration of LIFAC sorbent injection technology at Richmond Power and Light`s (RP&L) Whitewater Valley Unit No. 2 under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North American (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and several other organizations including the Electric Power Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Final Report Volume 1: Public Design is to consolidate, for public use, all design and cost information regarding the LIFAC Desulfurization Facility at the completion of construction and startup.
Date: February 1, 1998
Partner: UNT Libraries Government Documents Department

LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

Description: This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.
Date: January 1, 1996
Partner: UNT Libraries Government Documents Department

LIFAC sorbent injection desulfurization demonstration project

Description: In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--85% of the sulfur dioxide (SO{sub 2}) in the flue gas. In this report, progress for the period July--September 1991 is covered.
Date: March 6, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project

Description: LIFAC combines upper-furnace limestone injection followed by post- furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the fifth Technical Progress Report covering the period October 1, 1991 through the end of December 1991. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.
Date: January 1, 1991
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 5, October--December 1991

Description: LIFAC combines upper-furnace limestone injection followed by post- furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the fifth Technical Progress Report covering the period October 1, 1991 through the end of December 1991. Due to the power plant`s planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.
Date: December 31, 1991
Partner: UNT Libraries Government Documents Department

LIFAC sorbent injection desulfurization demonstration project. Quarterly report No. 4, July--September 1991

Description: In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled ``LIFAC Sorbent Injection Desulfurization Demonstration Project.`` The host site for this $17 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--85% of the sulfur dioxide (SO{sub 2}) in the flue gas. In this report, progress for the period July--September 1991 is covered.
Date: March 6, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project

Description: Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers -- and requires more reagent material. However, if the demonstration is wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems. LIFAC is less expensive to install than conventional wet FGD processes. LIFAC's overall costs measured on a dollar-per-ton SO[sub 2] removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product. LIFAC is relatively simple to operate.
Date: January 1, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 11, April--June 1993

Description: The LIFAC technology has similarities to other sorbent injection technologies using humidification, but employs a unique patented vertical reaction chamber located down-stream of the boiler to facilitate and a 220 MW coal-fired boiler located at Kristiinankaupunki. At this facility, a slipstream (5000 SCFM) containing the calcined limestone was used to test a small-scale activation reactor (2.5 MW) in which the gas was humidified. Reactor residence times of 3 to 12 seconds resulted in SO{sub 2} removal rates up to 84%. Additional LIFAC pilot-scale tests were conducted at the 8 MW (thermal) level at the Neste Kulloo combustion laboratory to develop the relationships between the important operating and design parameters. Polish low-sulfur coal was burned to achieve 84% S0{sub 2} removal. In 1986, full-scale testing of LIFAC was conducted at Imatran Voima`s Inkoo power plant on a 250 MW utility boiler. An activation chamber was built to treat a flue gas stream representing about 70 MW. Even though the boiler was 250 MW, the 70 MW stream represented about one-half of the flue gas feeding one of the plant`s two ESP`s (i.e., each ESP receives a 125 MW gas stream). This boiler used a 1.5% sulfur coal and sulfur removal was initially 61%. By late 1987, SO{sub 2} removal rates had improved to 76%. In 1988, a LIFAC activation reactor was added to treat an additional 125 MW -- i.e., an entire flue gas/ESP stream-worth of flue gas from this same boiler. This newer activation reactor is achieving 7580% SO{sub 2} removal with Ca:S ratios between 2:1 and 2.5:1. In 1988, the first tests using high-sulfur US coals were run at the pilot scale at the Neste Kulloo Research Center, using a Pittsburgh No. 8 coal containing 3% sulfur. SO{sub 2} removal rates of 77% were achieved at a Ca:S ratio ...
Date: December 1, 1993
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project

Description: In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $22 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--85% of the sulfur dioxide (SO[sub 2]) in the flue gas. The work performed during this period (July--September 1992) was consistent with the revised Statement of Work (Scope Increase) and the approved schedule change contained in the Cooperative Agreement. During this period, emphasis was placed on startup and commissioning activities and baseline testing. Work was conducted under the three tasks comprising the Operations Phase. Summary of the work performed under these tasks is given.
Date: January 1, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 8, July--September 1992

Description: In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled ``LIFAC Sorbent Injection Desulfurization Demonstration Project.`` The host site for this $22 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--85% of the sulfur dioxide (SO{sub 2}) in the flue gas. The work performed during this period (July--September 1992) was consistent with the revised Statement of Work (Scope Increase) and the approved schedule change contained in the Cooperative Agreement. During this period, emphasis was placed on startup and commissioning activities and baseline testing. Work was conducted under the three tasks comprising the Operations Phase. Summary of the work performed under these tasks is given.
Date: December 31, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 13, October 1993--December 1993

Description: In Dec 1989, the U.S. Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled {open_quotes}LIFAC Sorbent Injection Desulfurization Demonstration Project.{close_quotes} The host site for this $22 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75-85% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten month negotiation period, LIFAC NA and the U.S. DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the thirteenth Technical Progress Report covering the period October 1, 1993 through the end of December 1993. Due to the power plant`s planned outage in March 1991, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in Aug 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.
Date: May 1, 1994
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 9, October--December 1992

Description: Sorbent injection is a potentially important alternative to conventional wet lime and limestone scrubbing, and this project is another effort to test alternative sorbent injection approaches. In comparison to wet systems, LIFAC, with recirculation of the sorbent, removes less sulfur dioxide - 75--85% relative to 90% or greater for conventional scrubbers -- and requires more reagent material. However, if the demonstration is wet scrubbing systems: LIFAC is relatively easy to retrofit to an existing boiler and requires less area than conventional wet FGD systems. LIFAC is less expensive to install than conventional wet FGD processes. LIFAC`s overall costs measured on a dollar-per-ton SO{sub 2} removed basis are less, an important advantage in a regulatory regime with trading of emission allocations. LIFAC produces a dry, readily disposable waste by-product versus a wet product. LIFAC is relatively simple to operate.
Date: December 31, 1992
Partner: UNT Libraries Government Documents Department

LIFAC Sorbent Injection Desulfurization Demonstration Project. Quarterly report No. 12, July--September 1993

Description: In December 1989, the U.S. Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round III). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled {open_quotes}LIFAC Sorbent Injection Desulfurization Demonstration Project.{close_quotes} The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75-85% of the sulfur dioxide (SO{sub 2}) in the flue gas. The host site for this $22 million, three-phase project is Richmond Power and Light`s Whitewater Valley Unit No. 2 in Richmond, Indiana. The three project phases are: (1) Design; (2A) Long Lead Procurement; (2B) Construction; and (3) Operations. The design phase began on August 8, 1990 and was scheduled to last six months. Phase 2A, long lead procurement, overlaps the design phase and was expected to require about four months to complete. The construction phase was then to continue for another seven months, while the operations phase was scheduled to last about twenty-six months. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the U.S. DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the twelfth Technical Progress Report covering the period July 1, 1993 through the end of September 1993. Due to the power plant`s planned outage in March 1991, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.
Date: December 31, 1993
Partner: UNT Libraries Government Documents Department

Engineering development of advanced froth flotation. Volume 2, Final report

Description: This report is an account of findings related to the Engineering and Development of Advanced Froth Flotation project. The results from benchscale and proof-of-concept (POC) level testing are presented and the important results from this testing are used to refine a conceptual design and cost estimate for a 20 TPH Semi-Works Facility incorporating the final proposed technology.
Date: March 1, 1995
Creator: Ferris, D.D.; Bencho, J.R. & Torak, E.R.
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 25, October 1, 1994--December 31, 1994

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.
Date: December 31, 1994
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation. Quarterly technical progress report No. 26, January 1, 1995--March 31, 1995

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO{sub 2} per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO{sub 2} emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. This progress report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.
Date: July 1, 1995
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

Description: The Department of Energy (DOE) awarded a contract entitled Engineering Development of Advanced Physical Fine Coal Cleaning Technology - Froth Flotation'', to ICF Kaiser Engineers with the following team members, Ohio Coal Development Office, Babcock and Wilcox, Consolidation Coal Company, Eimco Process Equipment Company, Illinois State Geological Survey, Virginia Polytechnic Institute and State University, Process Technology, Inc. This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings.
Date: February 12, 1993
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

Description: The construction of the DOE POC at the OCDO facility continued through this entire quarter. By the end of the quarter approximately 90% of all of the construction had been completed. All equipment has beeninstalled, checked for mechanical and installation and operated from a local pushbutton. During this quarter a review of items to be completed for start-up was compiled. This information was then presented to the construction subcontractors and agreement was concluded that all items will be completed and operational for processing coal by February 1, 1993. There are still several items that were not on site for installation during this quarter. These items are the flocculant controls supplied by Westec Engineering, Inc., and the discharge valve for the hyperbaric filter supplied by KHD. Neither of these items will prevent start-up. The flocculants can be manually controlled and provisions are all ready provided to bypass the hyperbaric filter to the Sharpels high-G centrifuge. Both of these items are scheduled for delivery in mid-January.
Date: January 1, 1992
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

Description: This document a quarterly report prepared in accordance with the project reporting requirements covering the period from July 1, 1992 to September 30, 1992. This report provides a summary of the technical work undertaken during this period, highlighting the major results. A brief description of the work done prior to this quarter is provided in this report under the task headings. The overall project scope of the engineering development project is to conceptually develop a commercial flowsheet to maximize pyritic sulfur reduction at practical energy recovery values. This is being accomplished by utilizing the basic research data on the surface properties of coal, mineral matter and pyrite obtained from the Coal Surface Control for Advanced Fine Coal Flotation Project, to develop this conceptual flowsheet. The conceptual flowsheet must be examined to identify critical areas that need additional design data. This data will then be developed using batch and semi-continuous bench scale testing. In addition to actual bench scale testing, other unit operations from other industries processing fine material will be reviewed for potential application and incorporated into the design if appropriate. The conceptual flowsheet will be revised based on the results of the bench scale testing and areas will be identified that need further larger scale design data verification, to prove out the design.
Date: January 1, 1991
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

Description: Work completed produced the criteria for additional engineering analysis, computation and detailed experimental benchscale testing for areas of uncertainty. The engineering analysis, computation, bench-scale testing and component development was formulated to produce necessary design information to define a commercially operating system. In order to produce the required information by means of bench-scale testing and component development, a uniform coal sample was procured. After agreement with DOE, a selected sample of coal from those previously listed was secured. The test plan was developed in two parts. The first part listed procedures for engineering and computational analyses of those deficiencies previously identified that could be solved without bench scale testing. Likewise, the second part prepared procedures for bench-scale testing and component development for those deficiencies previously identified in Task 3.
Date: February 12, 1993
Partner: UNT Libraries Government Documents Department

Engineering development of advanced physical fine coal cleaning technologies: Froth flotation

Description: A study conducted by Pittsburgh Energy Technology Center of sulfur emissions from about 1,300 United States coal-fired utility boilers indicated that half of the emissions were the result of burning coals having greater than 1.2 pounds of SO[sub 2] per million BTU. This was mainly attributed to the high pyritic sulfur content of the boiler fuel. A significant reduction in SO[sub 2] emissions could be accomplished by removing the pyrite from the coals by advanced physical fine coal cleaning. An engineering development project was prepared to build upon the basic research effort conducted under a solicitation for research into Fine Coal Surface Control. The engineering development project is intended to use general plant design knowledge and conceptualize a plant to utilize advanced froth flotation technology to process coal and produce a product having maximum practical pyritic sulfur reduction consistent with maximum practical BTU recovery.
Date: January 1, 1992
Partner: UNT Libraries Government Documents Department