330 Matching Results

Search Results

Advanced search parameters have been applied.

Cold Vacuum Drying (CVD) Facility Sampling and Analysis Plan

Description: The Cold Vacuum Drying (CVD) Facility provides the required process systems, supporting equipment, and facilities needed for the conditioning of spent nuclear fuel (SNF) from the Hanford K-Basins prior to storage at the Canister Storage Building (CSB). The process water conditioning (PWC) system collects and treats the selected liquid effluent streams generated by the CVD process. The PWC system uses ion exchange modules (IXMs) and filtration to remove radioactive ions and particulate from CVD effluent streams. Water treated by the PWC is collected in a 5000-gallon storage tank prior to shipment to an on-site facility for additional treatment and disposal. The purpose of this sampling and analysis plan is to document the basis for achieving the following data quality objectives: (1) Measurement of the radionuclide content of the water transferred from the multi-canister overpack (MCO), vacuum purge system (VPS) condensate tank, MCO/Cask annulus and deionized water flushes to the PWC system receiver tanks. (2) Trending the radionuclide inventory of IXMs to assure that they do not exceed the limits prescribed in HNF-2760, Rev. 0-D, ''Safety Analysis Report for Packaging (Onsite) Ion Exchange Modules,'' and HNF-EP-0063 Rev. 5, ''Hanford Site Solid Waste Acceptance Criteria'' for Category 3, non-TRU, low level waste (LLW). (3) Determining the radionuclide content of the PWC system bulk water storage tank to assure that it meets the limits set forth in HNF-3 172, Rev. 0, ''Hanford Site Liquid Waste Acceptance Criteria,'' to permit transfer and disposal at the Effluent Treatment Facility (ETF) located at the 200 East Area.
Date: September 22, 2000
Creator: IRWIN, J.J.
Partner: UNT Libraries Government Documents Department

Warehouse Plan for the Multi Canister Overpack (MC0) and Baskets

Description: The Multi-Canister Overpacks (MCO) will contain spent nuclear fuel (SNF) removed from the K East and West Basins. The SNF will be placed in fuel storage baskets that will be stacked inside the MCOs. Approximately 400 MCOs and 21 70 baskets will be fabricated for this purpose. These MCOs, loaded with SNF, will be placed in interim storage in the Canister Storage Building (CSB) located in the 200 Area of the Hanford Site. The MCOs consist of different components/sub-assemblies that will be manufactured by one or more vendors. All component/sub-assemblies will be shipped to the Hanford Site Central Stores Warehouse, 2355 Stevens Drive, Building 1163 in the 1100 Area, for inspection and storage until these components are required at the CSB and K Basins. The MCO fuel storage baskets will be manufactured in the MCO basket fabrication shop located in Building 328 of the Hanford Site 300 Area. The MCO baskets will be inspected at the fabrication shop before shipment to the Central Stores Warehouse for storage. The MCO components and baskets will be stored as received from the manufacturer with specified protective coatings, wrappings, and packaging intact to maintain mechanical integrity of the components and to prevent corrosion. The components and baskets will be shipped as needed from the warehouse to the CSB and K Basins. This warehouse plan includes the requirements for receipt of MCO components and baskets from the manufacturers and storage at the Hanford Site Central Stores Warehouse. Transportation of the MCO components and baskets from the warehouse, unwrapping, and assembly of the MCOs are the responsibility of SNF Operations and are not included in this plan.
Date: March 27, 2000
Creator: MARTIN, M.K.
Partner: UNT Libraries Government Documents Department

Phased Startup Initiative Phases 3 and 4 Test Plan and Test Specification (OCRWM)

Description: Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. These tests are described in separate planning documents. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: (1) Define the test scope for the FRS and IWTS; (2) Provide detailed test requirements that can be used to write the specific test procedures; (3) Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and (4) Define specific test objectives and acceptance criteria.
Date: February 28, 2000
Creator: PITNER, A.L.
Partner: UNT Libraries Government Documents Department

Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6

Description: This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.
Date: April 19, 2000
Creator: ARD, K.E.
Partner: UNT Libraries Government Documents Department

Phase Startup Initiative Phases 3 and 4 Test Plan and Test Specification ( OCRWM)

Description: Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: Define the Phase 3 and 4 test scope for the FRS and IWTS; Provide detailed test requirements that can be used to write the specific test procedures; Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and Define specific test objectives and acceptance criteria.
Date: August 7, 2000
Creator: PAJUNEN, A.L. & LANGEVIN, M.J.
Partner: UNT Libraries Government Documents Department

Metals and Alloys Material Stabilization Process Plan

Description: This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.
Date: May 18, 2000
Creator: RISENMAY, H.R. & BURK, R.A.
Partner: UNT Libraries Government Documents Department

Oxidation Kinetics of K Basin Fuel (OCRWM)

Description: Oxidation testing of K Basin-stored N Reactor fuel in dry air, moist air, and moist helium provided reaction rate data for the Spent Nuclear Fuel Project. The tests were performed on small samples from two spent nuclear fuel elements retrieved from the closed canisters of the K West Basin. The spent nuclear fuel samples were tested using a thermogravimetric analysis system modified for moist-gas operation to allow testing in moist environments. The tests were run at constant temperature and water vapor pressure. The moist helium tests used 6.5 H a water vapor, producing seventeen data between 75 C and 210 C. Eight of these data were excluded from primary consideration due to testing anomalies and balance drift issues. Regression analysis of the nine acceptable data provided good assurance that the moist-helium results are consistent with literature data within the temperature range of 25 C to 210 C. Concerns about possible oxygen poisoning from air in-leakage and mass transfer limitations on the test data were reviewed. If oxygen poisoning occurred it was not likely to have biased the data sufficiently to change the basic conclusions of comparability to the literature data. Mass transfer limitations did not appear to have had significant effect on the moist-helium data.
Date: September 25, 2000
Creator: TRIMBLE, D.J.
Partner: UNT Libraries Government Documents Department

Low-Level Burial Grounds Waste Analysis Plan

Description: The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for waste accepted for storage and/or disposal at the Low-Level Burial Grounds which are located in the 200 East and West Areas of the Hanford Facility, Richland, Washington. This WAP documents the methods used to characterize, obtain and analyze representative samples of waste managed at this unit.
Date: March 2, 2000
Creator: ELLEFSON, M.D.
Partner: UNT Libraries Government Documents Department

Comparison Evaluation of the PFP FSAR and NRC Regulatory Guide 3.39 with DOE-STD-3009-94

Description: One of the Plutonium Finishing Plant's (PFP) current Authorization Basis (AB) documents is the Final Safety Analysis Report (FSAR). This FSAR (HNF-SD-CP-SAR-02 1) was prepared to the format and content guidance specified in U.S. Nuclear Regulatory Commission (NRC) Regulatory Guide 3.39, Standard Format and Content of License Applications for Plutonium Processing and Fuel Fabrication Plants (RG 3.39). In April 1992, the US Department of Energy (DOE) issued DOE Order 5480.23 which established the FSAR requirements for DOE nonreactor nuclear facilities. In 1994, DOE issued DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, which is a format and content guide addressing the preparation of FSARs in accordance with DOE Order 5480.23. During the initial preparation and issuance of the PFP FSAR the format and content guidance contained in NRC Regulatory Guide 3.39 was utilized, since it was the most applicable guidance at the time for the preparation of Safety Analysis Reports for plutonium processing plants. With the adoption of DOE Order 5480.23 and DOE-STD-3009-94, DOE required the preparation of SARs to meet the format and content of those DOE documents. The PFP was granted an exemption to continue with RG 3.39 format for future FSAR revisions. PFP modifications and additions have required PFP FSAR modifications that have typically been prepared to the same NRC Regulatory Guide 3.39 format and content, to provide consistency with the PFP FSAR. This document provides a table comparison between the 3009 and RG 3.39 formats to validate the extent of PFP FSAR compliance with the intent of DOE Order 5480.23 and DOE-STD-3009-94. This evaluation was initially performed on Revisions 1 and 1A of the PFP FSAR. With the preparation of a Revision 2 draft to the FSAR, sections with significant changes were reevaluated for compliance and the tables were updated, ...
Date: July 28, 2000
Creator: OSCARSON, E.E.
Partner: UNT Libraries Government Documents Department

Test Plan for Radioactive Testing of a Vertical Direct Denitration Calciner

Description: The prototype Vertical Denitration Calciner (VDC) is installed in glovebox 188 in the Plutonium Process Support Laboratory (PPSL). Safety analysis contained in WHC-SD-CP-SAR-021 (FSAR) Rev. 0-L and Addendum to WHC-SD-CP-SAR-021, ''Laboratory Prototype Calciner'' establishes the prototype VDC needs to be shut down if a seismic event of greater than 0.07 g occurs. Shut down is to be automatic upon detection of the seismic event. This requires tie-in of various valves and power for the prototype VDC into the existing Seismic Shutdown System for the Ventilation Supply Fans described in FSAR 5.4.1.2.4. The proposed changes covered by this USQ evaluation include: (1) the physical tie-in modifications, including drawings and Engineering Change Notice (ECN), (2) the work package for accomplishing the modifications, (3) the changes to the System Description Documents, (4) the changes to the Safety Equipment List necessitated by the modifications, and (5) the changes to the failure modes and effects analysis. WHC-SDCP-OSR-010, Plutonium Finishing Plant Operational Safety Requirements Limiting Condition for Operation (LCO) 3.2.3 has been revised to include the requirement for the existing seismic shutdown system to also shut down the laboratory calciner in the event of detection of a greater than 0.07 g seismic event.
Date: August 13, 1999
Creator: COMPTON, J.A.
Partner: UNT Libraries Government Documents Department

Gas Composition Transients in the Cold Vacuum Drying (CVD) Facility

Description: The purpose of this document is to evaluate selected problems involving the prediction of transient gas compositions during Cold Vacuum Drying operations. The problems were evaluated to answer specific design questions. The document is formatted as a topical report with each section representing a specific problem solution. The problem solutions are reported in the calculation format specified in HNF-1613, Rev. 0, EP 7.6.
Date: May 10, 2000
Creator: PACKER, M.J.
Partner: UNT Libraries Government Documents Department

Hazard Classification for Fuel Supply Shutdown Facility

Description: Final hazard classification for the 300 Area N Reactor fuel storage facility resulted in the assignment of Nuclear Facility Hazard Category 3 for the uranium metal fuel and feed material storage buildings (303-A, 303-B, 303-G, 3712, and 3716). Radiological for the residual uranium and thorium oxide storage building and an empty former fuel storage building that may be used for limited radioactive material storage in the future (303-K/3707-G, and 303-E), and Industrial for the remainder of the Fuel Supply Shutdown buildings (303-F/311 Tank Farm, 303-M, 313-S, 333, 334 and Tank Farm, 334-A, and MO-052).
Date: September 7, 2000
Creator: BENECKE, M.W.
Partner: UNT Libraries Government Documents Department

Honeywell Modular Automation System Computer Software Documentation

Description: The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP). This CSWD describes hardware and PFP developed software for control of stabilization furnaces. The Honeywell software can generate configuration reports for the developed control software. These reports are described in the following section and are attached as addendum's. This plan applies to PFP Engineering Manager, Thermal Stabilization Cognizant Engineers, and the Shift Technical Advisors responsible for the Honeywell MAS software/hardware and administration of the Honeywell System.
Date: December 4, 2000
Creator: STUBBS, A.M.
Partner: UNT Libraries Government Documents Department

Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

Description: 1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.
Date: November 13, 2000
Creator: Miska, C. R.
Partner: UNT Libraries Government Documents Department