1,061 Matching Results

Search Results

Advanced search parameters have been applied.

THE ECONOMICAL PRODUCTION OF ALCOHOL FUELS FROM COAL-DERIVED SYNTHESIS GAS. Includes quarterly technical progress report No.25 from 10/01/1997-12/31/1997, and quarterly technical progress report No.26 from 01/01/1998-03/31/1998

Description: This project was divided into two parts. One part evaluated possible catalysts for producing higher-alcohols (C{sub 2} to C{sub 5+}) as fuel additives. The other part provided guidance by looking both at the economics of mixed-alcohol production from coal-derived syngas and the effect of higher alcohol addition on gasoline octane and engine performance. The catalysts studied for higher-alcohol synthesis were molybdenum sulfides promoted with potassium. The best catalysts produced alcohols at a rate of 200 g/kg of catalyst/h. Higher-alcohol selectivity was over 40%. The hydrocarbon by-product was less than 20%. These catalysts met established success criteria. The economics for mixed alcohols produced from coal were poor compared to mixed alcohols produced from natural gas. Syngas from natural gas was always less expensive than syngas from coal. Engine tests showed that mixed alcohols added to gasoline significantly improved fuel quality. Mixed-alcohols as produced by our catalysts enhanced gasoline octane and decreased engine emissions. Mixed-alcohol addition gave better results than adding individual alcohols as had been done in the 1980's when some refiners added methanol or ethanol to gasoline.
Date: March 1, 1999
Partner: UNT Libraries Government Documents Department

Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

Description: The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO{sub x}) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of $23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH{sub 3}) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO{sub x} and NH{sub 3} react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment from sulfur compounds formed ...
Date: December 1999
Creator: Federal Energy Technology Center (U.S.)
Partner: UNT Libraries Government Documents Department

Annual Technical Progress Report - West Hackberry Tertiary Project

Description: The West Hackberry Tertiary Project is a field test of the concept that air injection can be combined with the Double Displacement Process to produce a tertiary recovery process that is both low cost and economic at current oil prices. The Double Displacement Process is the gas displacement of a water invaded oil column for the purpose of recovering tertiary oil by gravity drainage. In reservoirs with pronounced bed dip such as those found in West Hackberry and other Gulf Coast salt dome fields, reservoir performance has shown that gravity drainage recoveries average 80% to 90% of the original oil in place while waterdrive recoveries average 50% to 60% of the original oil in place. The target for tertiary oil recovery in the Double Displacement Process is the incremental oil between the 50% to 60% waterdrive recoveries and the 80% to 90% gravity drainage recoveries. Air injection on the west flank began in November of 1994. Although west flank air injection has increased reservoir pressure by 500 pounds per square inch (psi), production response has not yet occurred. The gas cap on the west flank has not expanded sufficiently to push the oil rim down to the nearest downstructure well.
Date: September 30, 1997
Creator: Fornea, Allen; Cerveny, Bruce & Gillham, Travis H.
Partner: UNT Libraries Government Documents Department

ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

Description: Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing, scale-up, pilot-scale (0.5 MW{sub e}) testing at conditions representative of various regenerable SO{sub 2}-control systems, preparation of ...
Date: May 1999
Creator: Weber, Robert S.
Partner: UNT Libraries Government Documents Department

Characterization of Phase and Emulsion Behavior, Surfactant Retention, and Oil Recovery for Novel Alcohol Ethoxycarboxylate Surfactants

Description: This semi-annual technical progress report describes work performed at Clark Atlanta University under DOE Grant No. DE-FG26-97FT97278 during the period October 01, 1997 to April 01, 1998 which covers the first six months of the project. During this reporting period, laboratory space to set up the surfactant characterization measurement system in the Research Science Center was made available. A Ph.D. student in Chemistry was identified and is supported as a Graduate Research Assistant in this project. Her contribution towards this project will form her Ph.D. thesis. The test matrix to perform salinity and temperature scans was established. Supply requests to obtain refined hydrocarbon, surfactant, and crude were processed and supplies obtained. A temperature bath with a control unit to perform temperature scans was obtained on loan from Federal Energy Technology Center, Morgantown, WV. The setting up of the temperature control unit, and associated chiller with water circulation lines is in progress. Tests were conducted on several hybrid surfactants to identify the best surfactants for future experimental work that yield almost equal volumes of top, middle, and bottom phases when mixed with oil and water. The student reviewed the current literature in the subject area, and modeling efforts that were established in previous studies to predict electrical conductivities and inversion phenomena. These activities resulted in one published conference paper, and one student poster paper during this reporting period.
Date: May 1, 1998
Creator: Moeti, Lebone T. & Sampath, Ramanathan
Partner: UNT Libraries Government Documents Department

Automated Boiler Combustion Controls for Emission Reduction and Efficiency Improvement

Description: In the late 1980s, then President Bush visited Krakow, Poland. The terrible air quality theremotivated him to initiate a USAID-funded program, managed by DOE, entitled �Krakow Clean Fossil Fuels and Energy Efficiency Program.� The primary objective of this program was to encourage the formation of commercial ventures between U.S. and Polish firms to provide equipment and/or services to reduce pollution from low-emission sources in Krakow, Poland. This program led to the award of a number of cooperative agreements, including one to Control Techtronics International. The technical objective of CTI�s cooperative agreement is to apply combustion controls to existing boiler plants in Krakow and transfer knowledge and technology through a joint U.S. and Polish commercial venture. CTI installed automatic combustion controls on five coal boilers for the district heating system in Krakow. Three of these were for domestic hot-water boilers, and two were for steam for industrial boilers. The following results have occurred due to the addition of CTI�s combustion controls on these five existing boilers: ! 25% energy savings ! 85% reduction in particulate emissions The joint venture company CTI-Polska was then established. Eleven additional technical and costing proposals were initiated to upgrade other coal boilers in Krakow. To date, no co-financing has been made available on the Polish side. CTI-Polska continues in operation, serving customers in Russia and Ukraine. Should the market in Poland materialize, the joint venture company is established there to provide equipment and service.
Date: December 2, 1998
Partner: UNT Libraries Government Documents Department

Productivity and Injectivity of Horizontal Wells

Description: A general wellbore flow model is presented to incorporate not only frictional, accelerational and gravitational pressure drops, but also the pressure drop caused by inflow. Influence of inflow or outflow on the wellbore pressure drop is analyzed. New friction factor correlations accounting for both inflow and outflow are also developed. The greatest source of uncertainty is reservoir description and how it is used in simulators. Integration of data through geostatistical techniques leads to multiple descriptions that all honor available data. The reality is never known. The only way to reduce this uncertainty is to use more data from geological studies, formation evaluation, high resolution seismic, well tests and production history to constrain stochastic images. Even with a perfect knowledge about reservoir geology, current models cannot do routine simulations at a fine enough scale. Furthermore, we normally don't know what scale is fine enough. Upscaling introduces errors and masks some of the physical phenomenon that we are trying to model. The scale at which upscaling is robust is not known and it is probably smaller in most cases than the scale actually used for predicting performance. Uncertainties in the well index can cause errors in predictions that are of the same magnitude as those caused by reservoir heterogeneities. Simplified semi-analytical models for cresting behavior and productivity predictions can be very misleading.
Date: April 29, 1997
Creator: Aziz, Khalid; Arababi, Sepehr & Hewett, Thomas A.
Partner: UNT Libraries Government Documents Department

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)

Description: The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based enhanced oil recovery. The study focused on the Ford Geraldine unit, which produces from the upper Bell Canyon Formation (Ramsey sandstone). Reservoirs in this and other Delaware Mountain Group fields have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Outcrop analogs were studied to better interpret the depositional processes that formed the reservoirs at the Ford Geraldine unit and to determine the dimensions of reservoir sandstone bodies. Facies relationships and bedding architecture within a single genetic unit exposed in outcrop in Culberson County, Texas, suggest that the sandstones were deposited in a system of channels and levees with attached lobes that initially prograded basinward, aggraded, and then turned around and stepped back toward the shelf. Channel sandstones are 10 to 60 ft thick and 300 to 3,000 ft wide. The flanking levees have a wedge-shaped geometry and are composed of interbedded sandstone and siltstone; thickness varies from 3 to 20 ft and length from several hundred to several thousands of feet. The lobe sandstones are broad lens-shaped bodies; thicknesses range up to 30 ft with aspect ratios (width/thickness) of 100 to 10,000. Lobe sandstones may be interstratified with laminated siltstones.
Date: April 1, 1998
Creator: Cole, Andrew G.; Asquith, George B.; Guzman, Jose I.; Barton, Mark D.; Malik, Mohammad A.; Dutton, Shirley P. et al.
Partner: UNT Libraries Government Documents Department

Measurement of Downhole Steam Quality and Total Energy by Optical Methods

Description: Initial steps have been taken to measure the mass of water in vapor and liquid phases downhole in a steam injection heavy oil recovery system. A suitable portion of the electromagnetic spectrum has been identified over which the presence of liquid water and vapor can be separated. This is in the near infrared and extends from ~900 nm to 1.8 µm region. A high pressure and high temperature cell has been constructed and tested for stagnant transmissions. Pitting of the optical ports due to the presence of high-pressure (8.5 MPA) and high temperature (300C) water has lead to a redesign of the optical ports, these modifications will be incorporated in the next quarter. The actual determination of the mass of water, either in liquid or vapor, has not been reliably determined, due in part to the pitting problems being addressed in the modification. However, qualitative data has been recorded clearly showing an increase in absorption with increasing number of absorbing molecules, i.e. mass of water.
Date: April 1, 1998
Creator: Donaldson, A. B. & Allen, Graham R.
Partner: UNT Libraries Government Documents Department

Development of Novel Activated Carbon-Based Adsorbents for Control of Mercury Emission From Coal-Fired Power Plants

Description: The overall objective of this study is to evaluate pertinent design and operational parameters that would enable successful application of activated carbon adsorption for the reduction of mercury emissions from coal-fired power plants. The study will evaluate the most suitable impregnate such as sulfur, chloride and other chelating agents for its ability to enhance the adsorptive capacity of activated carbon for mercury vapor under various process conditions. The main process variables to be evaluated include temperature, mercury concentration and speciation, relative humidity, oxygen content, and presence of SO2 and NOx in the flue gas. The optimal amount of impregnate for each of these carbons will be determined based on the exhibited performance. Another important parameter which governs the applicability of adsorption technology for the flue gas clean up is the rate at which vapor phase mercury is being removed from the flue gas by activated carbon. Therefore, the second part of this study will evaluate the adsorption kinetics using the impregnated activated carbons listed above. The rate of mercury uptake will also be evaluated under the process conditions that are representative of coal-fired power plants. Concerned with the ability of the adsorbed mercury to migrate back into the environment once saturated adsorbent is removed from the system, the study will also focus on the mercury desorption rate as a function of the type of impregnate, loading conditions, and the time of contact prior to disposal.
Date: September 8, 1997
Creator: Vidic, Radisav D.
Partner: UNT Libraries Government Documents Department

Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

Description: The Liquid Phase Methanol (LPMEOW) Demonstration Project at Kingsport Tennessee, is a $213.7 million cooperative agreement between the U.S. Department of Energy (DOE) and Air Products Liquid Phase Conversion Company, L.P. (the Partnership) to produce methanol from coal-derived synthesis gas (syngas). Air Products and Chemicals, Inc. (Air Products) and Eastman Chemical Company (Eastman) formed the Partnership to execute the Demonstration Project. The LPMEOW Process Demonstration Unit was built at a site located at the Eastman complex in Kingsport. During this quarter, initial planning and procurement work began on the seven project sites which have been accepted for participation in the off-site, methanol product-use test plan. Two of the projects have begun pre-testing of equipment and three other projects have commenced with equipment procurement, Methanol produced from carbon monoxide (CO)- rich syngas at the Alternative Fuels Development Unit (AFDU) in LaPorte, TX has been shipped to four of the project sites in anticipation of the start of testing during the first quarter of calendar year 1998. Catalyst activity, as defined by the ratio of the rate constant at any point in time to the rate constant for a freshly reduced catalyst (as determined in the laboratory autoclave), continued to decline more rapidly than expected. In response to concentrations of arsenic and sulfbr detected on catalyst samples from the LPMEOW Reactor, Eastman replaced both the arsine- and sulfiwremoval material in the Eastman guard bed which treats the primary syngas feed stream (&danced Gas) prior to its introduction into both the Eastman fixed-bed methanol plant and the LPMEOWM Demonstration Unit. After restarting the demonstration unit, the catalyst deactivation rate remained essentially unchanged. Parallel testing in the laboratory using arsine-doped, and subsequently arsine- and SuIfi-doped syngas, ako ftiIed to prove that arsine was responsible for the higher-than-expected rate of catalyst deactivation in the demonstration ...
Date: December 21, 1998
Partner: UNT Libraries Government Documents Department

Evaluation of Gas Reburning & Low NOx Burners on a Wall Fired Boiler Performance and Economics Report Gas Reburning-Low NOx Burner System Cherokee Station Unit 3 Public Service Company of Colorado

Description: Under the U.S. Department of Energy's Clean Coal Technology Program (Round 3), a project was completed to demonstrate control of boiler NOX emissions and to a lesser degree, due to coal replacement, SO2 emissions. The project involved combining Gas Reburning with Low NOX Burners (GR-LNB) on a coal-fired electric utility boiler to determine if high levels of NOX reduction (70%) could be achieved. Sponsors of the project included the U.S. Department of Energy, the Gas Research Institute, Public Service Company of Colorado, Colorado Interstate Gas, Electric Power Research Institute, and the Energy and Environmental Research Corporation. The GR-LNB demonstration was performed on Public Service Company of Colorado's (PSCO) Cherokee Unit #3, located in Denver, Colorado. This unit is a 172 MW~ wall-fired boiler that uses Colorado Bituminous, low-sulfur coal. It had a baseline NOX emission level of 0.73 lb/106 Btu using conventional burners. Low NOX burners are designed to yield lower NOX emissions than conventional burners. However, the NOX control achieved with this technique is limited to 30-50%. Also, with LNBs, CO emissions can increase to above acceptable standards. Gas Reburning (GR) is designed to reduce NOX in the flue gas by staged fuel combustion. This technology involves the introduction of natural gas into the hot furnace flue gas stream. When combined, GR and LNBs minimize NOX emissions and maintain acceptable levels of CO emissions. A comprehensive test program was completed, operating over a wide range of boiler conditions. Over 4,000 hours of operation were achieved, providing substantial data. Measurements were taken to quantify reductions in NOX emissions, the impact on boiler equipment and operability and factors influencing costs. The GR-LNB technology achieved good NOX emission reductions and the goals of the project were achieved. Although the performance of the low NOX burners (supplied by others) was less than expected, ...
Date: July 1, 1998
Partner: UNT Libraries Government Documents Department

Simulated Coal Gas MCFC Power Plant System Verification

Description: Technical Report September 1998 This report was prepared as an account of work sponsored by an agency of the US Government. Neither the US Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owed rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the US Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the US Government or any agency thereof. This is the Technical Progress Report covering September 1998. All tasks have been completed, except for those discussed on the following pages. Unocal estimated the costs of dismantling and packaging the test facility for storage and shipment. The scope of work for the contract has been modified to accommodate the dismantling and packaging of the plant. An amendment to Sub-Contract No. MCP-9-UNO between M-C Power and Unocal has been executed which includes the Scope of Work in Unocal's cost estimate. Unocal continued maintenance of the 250-kW demonstration power plant. Bid packages for plant dismantling have been prepared and sent out to appropriate contractors for their proposals. A work plan and estimate for dismantling and packaging the plant for shipment has been prepared by Unocal. The plan has been reviewed by M-C Power and Bechtel with modifications made where appropriate. Unocal has obtained vendor qualifications for possible bidders who are acceptable to M-C Power. M-C Power has revised the bid packages to incorporate the modifications. Disassembly activities will proceed upon ...
Date: September 1, 1998
Creator: Scroppo, J.A.
Partner: UNT Libraries Government Documents Department

An Integrated System for the Treatment of Coal Conversion Wastewater

Description: Treatment of mixed waste from coal conversion wastewaters involves the degradation of toxic organics and the removal of heavy metals. An integrated and cost-effective treatment scheme that can implement such a process is considered essential to promote continued development and growth of coal conversion processes without any deleterious effects on our ecosystem. We have recently developed a pH-dependent, reversible heavy metal adsorption/desorption process which promises to be a cost-effective alternative to the treatment and disposal options currently in place for these inorganic contaminants. Our work shows that: (1) Polydisperse, industrial-grade surfactants can be used in the development of novel, surfactant-coated smectitic clays containing up to 50% by weight of adsorbed surfactant, (2) Reversible adsorption and resorption of cationic (CU(II) and Cd(II)) and anionic (Cr(VI)) heavy metals from their respective aqueous solutions onto these surfactant-modified smectites can be effected using pH of the medium as a switch, and (3) These surfactant-modified smectites can be repeatedly used (up to 5 times) with only a minimal loss in their adsorption potency and with very little leaching of the adsorbed surfactants.
Date: February 25, 1999
Creator: Wang, Henry Y. & Srinivasan, Keeran R.
Partner: UNT Libraries Government Documents Department

Low Temperature VOC Combustion Over Manganese, Cobalt and Zinc AlPO{sub 4} Molecular Sieves

Description: The objective of this project is to prepare manganese, cobalt and zinc containing AlPO{sub 4} molecular sieves and evaluate their catalytic activities for the removal of low levels of volatile organic compounds (VOCs) from gas streams. This report highlights our research activities for period October 1,1996 to March 31, 1997.
Date: March 31, 1997
Creator: Szostak, R.
Partner: UNT Libraries Government Documents Department

Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance

Description: Integrated Approach Towards the Application of Horizontal Wells to Improve Waterflooding Performance The overall purpose of the proposed project is to improve secondary recovery performance of a marginal oil field through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed reservoir description using an integrated approach. We expect that 2 to 5% of the original oil in place will be recovered using this method. This should extend the life of the reservoir by at least 10 years. The project is divided into two stages. In Stage I of the project, we selected part of the Glenn Pool Field - Self Unit. We conducted cross borehole tomography surveys and formation micro scanner logs through a newly drilled well. By combining the state-of-the-art data with conventional core and log data, we developed a detailed reservoir description based on an integrated approach. After conducting extensive reservoir simulation studies, we evaluated alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal injection well. We observed that selective completion of many wells followed by an increase in the injection rate was the most feasible option to improve the performance of the Self Unit. This management plan is currently being implemented and the performance is being monitored. Stage II of the project will involve selection of part of the same reservoir (Berryhill Unit - Tract 7), development of reservoir description using only conventional data, simulation of flow performance using developed reservoir description, selection of an appropriate reservoir management plan, and implementation of the plan followed by monitoring of reservoir performance.
Date: September 30, 1998
Creator: Liner, Chris; Kerr, Dennis & Kelkar, Mohan
Partner: UNT Libraries Government Documents Department

EM Task 13 - Cone Penetrometer for Subsurface Heavy Metals Detection

Description: Surface and subsurface contamination of soils by heavy metals, including Pb, Cr, Cu, Zn, and Cd has become an area of concern for many industrial and government organizations (1) Conventional sampling and analysis techniques for soil provide a high degree of sensitivity and selectivity for individual analytes. However, obtaining a representative sampling and analysis from a particular site using conventional techniques is time consuming and costly (2) Additionally, conventional methods are difficult to implement in the field for in situ and/or real-time applications. Therefore, there is a need for characterization and monitoring techniques for heavy metals in soils that allow cost-effective, rapid, in situ measurements. The overall objectives of this project are to evaluate potential calibration techniques for the laser-induced breakdown spectroscopy (LIBS)-CPT instrument, to provide a preliminary evaluation of the LIBS instrument calibration using samples obtained from the field and to provide technical support to field demonstration of the LIBS-CPT instrument at a DOE facility.
Date: November 1, 1998
Creator: Grisanti, Ames A. & Crocker, Charlene R.
Partner: UNT Libraries Government Documents Department

Post-Injection Geophysical Evaluation of the Winding Ridge Site CRADA 98-F012, Final Report

Description: Acid mine drainage (AMD) from underground mines is a major environmental problem. The disposal of coal combustion by-products (CCB) is also a major national problem due to the large volumes produced annually and the economics associated with transportation and environmentally safe disposal. The concept of returning large volumes of the CCB to their point of origin, underground mines, and using the typically alkaline and pozzolanic attributes of the waste material for the remediation of AMD has been researched rather diligently during the past few years by various federal and state agencies and universities. As the result, the State of Maryland initiated a full-scale demonstration of this concept in a small, 5-acre, unmapped underground mine located near Friendsville, MD. Through a cooperative agreement between the State of Maryland and the U.S. Department of Energy, several geophysical techniques were evaluated as potential tools for the post-injection evaluation of the underground mine site. Three non-intrusive geophysical surveys, two electromagnetic (EM) techniques and magnetometry, were conducted over the Frazee Mine, which is located on Winding Ridge near Friendsville, MD. The EM surveys were conducted to locate ground water in both mine void and overburden. The presence of magnetite, which is naturally inherent to CCB'S due to the combustion process and essentially transparent in sedimentary rock, provided the reason for using magnetometry to locate the final resting place of the CCB grout.
Date: September 16, 1998
Creator: Lyons, Connie; Current, Richard & Ackman, Terry
Partner: UNT Libraries Government Documents Department

IN SITU INFRARED STUDY OF CATALYTIC DECOMPOSITION OF NO

Description: The growing concerns for the environment and increasingly stringent standards for NO emission have presented a major challenge to control NO emissions from electric utility plants and automobiles. Catalytic decomposition of NO is the most attractive approach for the control of NO emission for its simplicity. Successful development of an effective catalyst for NO decomposition will greatly decrease the equipment and operation cost of NO control. Due to lack of understanding of the mechanism of NO decomposition, efforts on the search of an effective catalyst have been unsuccessful. Scientific development of an effective catalyst requires fundamental understanding of the nature of active site, the rate-limiting step, and an approach to prolong the life of the catalyst. Research is proposed to study the reactivity of adsorbates for the direct NO decomposition and to investigate the feasibility of two novel approaches for improving catalyst activity and resistance to sintering. The first approach is the use of silanation to stabilize metal crystallites and supports for Cu-ZSM-5 and promoted Pt catalysts; the second is utilization of oxygen spillover and desorption to enhance NO decomposition activity. An innovative infrared reactor system will be used to observe and determine the dynamic behavior and the reactivity of adsorbates during NO decomposition, oxygen spillover, and silanation. A series of experiments including X-ray diffraction, temperature programmed desorption, temperature programmed reaction, X-ray photoelectron spectroscopy will be used to characterized the catalysts. The information obtained from this study will provide a scientific basis for developing an effective catalyst for the NO decomposition under practical flue gas conditions.
Date: August 18, 1998
Creator: ALMUSAITEER, KHALID; KRISHNAMURTHY, RAM & CHUANG, STEVEN S.C.
Partner: UNT Libraries Government Documents Department

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

Description: This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.
Date: January 1, 1998
Partner: UNT Libraries Government Documents Department

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)

Description: The objective of this Class 3 project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two main phases. The original objectives of the reservoir-characterization phase of the project were (1) to provide a detailed understanding of the architecture and heterogeneity of two representative fields of the Delaware Mountain Group, Geraldine Ford and Ford West, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, (2) to chose a demonstration area in one of the fields, and (3) to simulate a CO 2 flood in the demonstration area. The Bureau's industry partner for the initial Phase 1 of the project was Conoco, Inc.. After the reservoir characterization and simulation of an area at the northern end of the Ford Geraldine unit were completed, Conoco decided not to proceed to Phase 2, installation of a CO 2 flood in the demonstration area. This decision by Conoco provides an opportunity for a more extensive field demonstration in East Ford field, with Orla Petco as the industry partner. East Ford field is immediately adjacent to the Ford Geraldine unit and produces from the same Ramsey sandstone channel. Phase 1 of the project has been expanded to include reservoir characterization of East Ford field. This additional reservoir-characterization task provides an excellent opportunity to test the transferability of the geologic model and log-interpretation methods developed during reservoir characterization of the Ford Geraldine unit to another Delaware sandstone field. The objectives of the implementation phase of the project remain the same, to ...
Date: July 31, 1998
Creator: Dutton, Shirley P.
Partner: UNT Libraries Government Documents Department

Midland Core Repository

Description: The facility continues to be organized and data continue to be entered into the same database that contains the Austin facility�s information. This is expected to continue throughout FY98. The roof has new been repaired.
Date: April 1, 1998
Creator: Tyler, Noel
Partner: UNT Libraries Government Documents Department