1,196 Matching Results

Search Results

Advanced search parameters have been applied.

Magnetic nanoparticles for applications in oscillating magnetic field

Description: Enzymatic and thermochemical catalysis are both important industrial processes. However, the thermal requirements for each process often render them mutually exclusive: thermochemical catalysis requires high temperature that denatures enzymes. One of the long-term goals of this project is to design a thermocatalytic system that could be used with enzymatic systems in situ to catalyze reaction sequences in one pot; this system would be useful for numerous applications e.g. conversion of biomass to biofuel and other commodity products. The desired thermocatalytic system would need to supply enough thermal energy to catalyze thermochemical reactions, while keeping the enzymes from high temperature denaturation. Magnetic nanoparticles are known to generate heat in an oscillating magnetic field through mechanisms including hysteresis and relaxational losses. We envisioned using these magnetic nanoparticles as the local heat source embedded in sub-micron size mesoporous support to spatially separate the particles from the enzymes. In this study, we set out to find the magnetic materials and instrumental conditions that are sufficient for this purpose. Magnetite was chosen as the first model magnetic material in this study because of its high magnetization values, synthetic control over particle size, shape, functionalization and proven biocompatibility. Our experimental designs were guided by a series of theoretical calculations, which provided clues to the effects of particle size, size distribution, magnetic field, frequency and reaction medium. Materials of theoretically optimal size were synthesized, functionalized, and their effects in the oscillating magnetic field were subsequently investigated. Under our conditions, the materials that clustered e.g. silica-coated and PNIPAM-coated iron oxides exhibited the highest heat generation, while iron oxides embedded in MSNs and mesoporous iron oxides exhibited the least bulk heating. It is worth noting that the specific loss power of PNIPAM-coated Fe{sub 3}O{sub 4} was peculiarly high, and the heat loss mechanism of this material remains to be ...
Date: December 15, 2010
Creator: Peeraphatdit, Chorthip
Partner: UNT Libraries Government Documents Department

Making Stuff Outreach at the Ames Laboratory and Iowa State University

Description: The U. S. Department of Energy's Ames Laboratory in Ames, Iowa was a coalition partner for outreach activities connected with NOVA's Making Stuff television series on PBS. Volunteers affiliated with the Ames Laboratory and Iowa State University, with backgrounds in materials science, took part in activities including a science-themed Family Night at a local mall, Science Cafes at the Science Center of Iowa, teacher workshops, demonstrations at science nights in elementary and middle schools, and various other events. We describe a selection of the activities and present a summary of their outcomes and extent of their impact on Ames, Des Moines and the surrounding communities in Iowa. In Part 2, results of a volunteer attitude survey are presented, which shed some light on the volunteer experience and show how the volunteers participation in outreach activities has affected their views of materials education.
Date: April 1, 2011
Creator: Ament, Katherine; Karsjen, Steven; Leshem-Ackerman, Adah & King, Alexander
Partner: UNT Libraries Government Documents Department

Indirectly detected chemical shift correlation NMR spectroscopy in solids under fast magic angle spinning

Description: The development of fast magic angle spinning (MAS) opened up an opportunity for the indirect detection of insensitive low-{gamma} nuclei (e.g., {sup 13}C and {sup 15}N) via the sensitive high-{gamma} nuclei (e.g., {sup 1}H and {sup 19}F) in solid-state NMR, with advanced sensitivity and resolution. In this thesis, new methodology utilizing fast MAS is presented, including through-bond indirectly detected heteronuclear correlation (HETCOR) spectroscopy, which is assisted by multiple RF pulse sequences for {sup 1}H-{sup 1}H homonuclear decoupling. Also presented is a simple new strategy for optimization of {sup 1}H-{sup 1}H homonuclear decoupling. As applications, various classes of materials, such as catalytic nanoscale materials, biomolecules, and organic complexes, are studied by combining indirect detection and other one-dimensional (1D) and two-dimensional (2D) NMR techniques. Indirectly detected through-bond HETCOR spectroscopy utilizing refocused INEPT (INEPTR) mixing was developed under fast MAS (Chapter 2). The time performance of this approach in {sup 1}H detected 2D {sup 1}H{l_brace}{sup 13}C{r_brace} spectra was significantly improved, by a factor of almost 10, compared to the traditional {sup 13}C detected experiments, as demonstrated by measuring naturally abundant organic-inorganic mesoporous hybrid materials. The through-bond scheme was demonstrated as a new analytical tool, which provides complementary structural information in solid-state systems in addition to through-space correlation. To further benefit the sensitivity of the INEPT transfer in rigid solids, the combined rotation and multiple-pulse spectroscopy (CRAMPS) was implemented for homonuclear {sup 1}H decoupling under fast MAS (Chapter 3). Several decoupling schemes (PMLG5{sub m}{sup {bar x}}, PMLG5{sub mm}{sup {bar x}x} and SAM3) were analyzed to maximize the performance of through-bond transfer based on decoupling efficiency as well as scaling factors. Indirect detection with assistance of PMLG{sub m}{sup {bar x}} during INEPTR transfer proved to offer the highest sensitivity gains of 3-10. In addition, the CRAMPS sequence was applied under fast MAS to increase the ...
Date: August 15, 2011
Creator: Mao, Kanmi
Partner: UNT Libraries Government Documents Department

Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

Description: An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.
Date: April 1, 2011
Creator: Rieken, Joel; Anderson, Iver & Kramer, Matthew
Partner: UNT Libraries Government Documents Department

Input/Output of ab-initio nuclear structure calculations for improved performance and portability

Description: Many modern scientific applications rely on highly computation intensive calculations. However, most applications do not concentrate as much on the role that input/output operations can play for improved performance and portability. Parallelizing input/output operations of large files can significantly improve the performance of parallel applications where sequential I/O is a bottleneck. A proper choice of I/O library also offers a scope for making input/output operations portable across different architectures. Thus, use of parallel I/O libraries for organizing I/O of large data files offers great scope in improving performance and portability of applications. In particular, sequential I/O has been identified as a bottleneck for the highly scalable MFDn (Many Fermion Dynamics for nuclear structure) code performing ab-initio nuclear structure calculations. We develop interfaces and parallel I/O procedures to use a well-known parallel I/O library in MFDn. As a result, we gain efficient I/O of large datasets along with their portability and ease of use in the down-stream processing. Even situations where the amount of data to be written is not huge, proper use of input/output operations can boost the performance of scientific applications. Application checkpointing offers enormous performance improvement and flexibility by doing a negligible amount of I/O to disk. Checkpointing saves and resumes application state in such a manner that in most cases the application is unaware that there has been an interruption to its execution. This helps in saving large amount of work that has been previously done and continue application execution. This small amount of I/O provides substantial time saving by offering restart/resume capability to applications. The need for checkpointing in optimization code NEWUOA has been identified and checkpoint/restart capability has been implemented in NEWUOA by using simple file I/O.
Date: December 15, 2010
Creator: Laghave, Nikhil
Partner: UNT Libraries Government Documents Department

An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems

Description: It was hypothesized that the variations in time to solution are driven by the competing mechanisms of exploration and exploitation.This thesis explores this hypothesis by examining two contrasting problems that embody the hypothesized tradeoff between exploration and exploitation. Plus one recall store (PORS) is an optimization problem based on the idea of a simple calculator with four buttons: plus, one, store, and recall. Integer addition and store are classified as operations, and one and memory recall are classified as terminals. The goal is to arrange a fixed number of keystrokes in a way that maximizes the numerical result. PORS 15 (15 keystrokes) represents the subset of difficult PORS problems and PORS 16 (16 keystrokes) represents the subset of PORS problems that are easiest to optimize. The goal of this work is to examine the tradeoff between exploitation and exploration in graph based evolutionary algorithm (GBEA) optimization. To do this, computational experiments are used to examine how solutions evolve in PORS 15 and 16 problems when solved using GBEAs. The experiment is comprised of three components; the graphs and the population, the evolutionary algorithm rule set, and the example problems. The complete, hypercube, and cycle graphs were used for this experiment. A fixed population size was used.
Date: May 8, 2012
Creator: Koch, Kaelynn
Partner: UNT Libraries Government Documents Department

Developing nanotechnology for biofuel and plant science applications

Description: This dissertation presents the research on the development of mesoporous silica based nanotechnology for applications in biofuels and plant science. Mesoporous silica nanoparticles (MSNs) have been the subject of great interest in the last two decades due to their unique properties of high surface area, tunable pore size and particle morphology. The robust nature of the silica framework is easily functionalized to make the MSNs a promising option for selective separations. Also, the independent channels that form the pores of MSN have been exploited in the use of particles as platforms for molecular delivery. Pore size and organic functionality are varied to identify the ideal adsorbent material for free fatty acids (FFAs). The resulting material is able to sequester FFAs with a high degree of selectivity from a simulated solution and microalgal oil. The recyclability and industrial implications are also explored. A continuation of the previous material, further tuning of MSN pore size was investigated. Particles with a smaller diameter selectively sequester polyunsaturated free fatty acids (PUFAs) over monounsaturated FFAs and saturated FFAs. The experimental results were verified with molecular modeling. Mesoporous silica nanoparticle materials with a pore diameter of 10 nm (MSN-10) were decorated with small gold nanoparticles. The resulting materials were shown to deliver proteins and DNA into plant cells using the biolistic method.
Date: June 20, 2012
Creator: Valenstein, Justin
Partner: UNT Libraries Government Documents Department

Developing new optical imaging techniques for single particle and molecule tracking in live cells

Description: Differential interference contrast (DIC) microscopy is a far-field as well as wide-field optical imaging technique. Since it is non-invasive and requires no sample staining, DIC microscopy is suitable for tracking the motion of target molecules in live cells without interfering their functions. In addition, high numerical aperture objectives and condensers can be used in DIC microscopy. The depth of focus of DIC is shallow, which gives DIC much better optical sectioning ability than those of phase contrast and dark field microscopies. In this work, DIC was utilized to study dynamic biological processes including endocytosis and intracellular transport in live cells. The suitability of DIC microscopy for single particle tracking in live cells was first demonstrated by using DIC to monitor the entire endocytosis process of one mesoporous silica nanoparticle (MSN) into a live mammalian cell. By taking advantage of the optical sectioning ability of DIC, we recorded the depth profile of the MSN during the endocytosis process. The shape change around the nanoparticle due to the formation of a vesicle was also captured. DIC microscopy was further modified that the sample can be illuminated and imaged at two wavelengths simultaneously. By using the new technique, noble metal nanoparticles with different shapes and sizes were selectively imaged. Among all the examined metal nanoparticles, gold nanoparticles in rod shapes were found to be especially useful. Due to their anisotropic optical properties, gold nanorods showed as diffraction-limited spots with disproportionate bright and dark parts that are strongly dependent on their orientation in the 3D space. Gold nanorods were developed as orientation nanoprobes and were successfully used to report the self-rotation of gliding microtubules on kinesin coated substrates. Gold nanorods were further used to study the rotational motions of cargoes during the endocytosis and intracellular transport processes in live mammalian cells. New rotational information ...
Date: December 15, 2010
Creator: Sun, Wei
Partner: UNT Libraries Government Documents Department

High Temperature coatings based on {beta}-NiAI

Description: High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB{sub 2} composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.
Date: July 10, 2012
Creator: Severs, Kevin
Partner: UNT Libraries Government Documents Department

Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

Description: The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
Date: May 9, 2012
Creator: Casadei, Cecilia
Partner: UNT Libraries Government Documents Department

Increasing the efficiency of organic solar cells by photonic and electrostatic-field enhancements

Description: Organic photovoltaic (OPV) technology is an attractive solar-electric conversion paradigm due to the promise of low cost roll-to-roll production and amenability to flexible substrates. Power conversion efficiency (PCE) exceeding 7% has recently been achieved. OPV cells suffer from low charge carrier mobilities of polymers, leading to recombination losses, higher series resistances and lower fill-factors. Thus, it is imperative to develop fabrication methodologies that can enable efficient optical absorption in films thinner than optical absorption length. Active layers conformally deposited on light-trapping, microscale textured, grating-type surfaces is one possible approach to achieve this objective. In this study, 40% theoretical increase in photonic absorption over flat OPVs is shown for devices with textured geometry by the simulation results. For verifying this theoretical result and improving the efficiency of OPVs by light trapping, OPVs were fabricated on grating-type textured substrates possessing t pitch and -coat PV active-layer on these textured substrates led to over filling of the valleys and shunts at the crest, which severely affected the performance of the resultant PV devices. Thus, it is established that although the optical design is important for OPV performance but the potential of light trapping can only be effectively tapped if the textures are amenable for realizing a conformal active layer. It is discovered that if the height of the underlying topographical features is reduced to sub-micron regime (e.g. 300 nm) and the pitch is increased to more than a micron (e.g. 2 μm), the textured surface becomes amenable to coating a conformal PV active-layer. The resultant PV cells showed 100% increase in average light absorption near the band edge due to trapping of higher wavelength photons, and 20% improvement in power conversion efficiency as compared with the flat PV cell. Another factor that severely limits the performance of OPVs is recombination of charge carriers. ...
Date: November 3, 2012
Creator: Nalwa, Kanwar
Partner: UNT Libraries Government Documents Department

Hot electron dynamics in graphene

Description: Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime the temperature T and electric field E are also ...
Date: October 20, 2011
Creator: Ling, Meng-Cheieh
Partner: UNT Libraries Government Documents Department

Advanced Electric Traction System Technology Development

Description: As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.
Date: January 14, 2011
Creator: Anderson, Iver
Partner: UNT Libraries Government Documents Department

Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

Description: As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top ...
Date: April 1, 2011
Creator: Heidloff, Andy; Rieken, Joel; Anderson, Iver & Byrd, David
Partner: UNT Libraries Government Documents Department

Ag on Si(111) from basic science to application

Description: In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-({radical}3x{radical}3)R30{degree}–Ag (Ag-Si-{radical}3 hereafter). In this thesis I systematically e plore effects of Ag deposition on the Ag-Si-{radical}3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.
Date: April 4, 2012
Creator: Belianinov, Aleksey
Partner: UNT Libraries Government Documents Department

Enhanced performance of organic light-emitting diodes (OLEDs) and OLED-based photoluminescent sensing platforms by novel microstructures and device architectures

Description: After a general introduction to OLEDs and OLED-based PL sensors, the transient emission mechanism of guest-host OLEDs is described both experimentally and theoretically. A monolithic and easy-to-apply process is demonstrated for fabricating multicolor microcavity OLEDs (that improve the sensor platform). The outcoupling issues of OLEDs at the substrate/air interface are addressed by using a microstructured polymer film resulting from a PS and polyethylene glycol (PEG) mixture. Based on the understanding of OLEDs and their improvement, research was done in order to realize integrated all organic-based O{sub 2} and pH sensors with improved signal intensity and sensitivity. The sensor design modification and optimization are summarized
Date: August 1, 2012
Creator: Liu, Rui
Partner: UNT Libraries Government Documents Department

Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

Description: A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.
Date: July 23, 2012
Creator: Ilgu, Muslum
Partner: UNT Libraries Government Documents Department

Final Report for CRADA Agreement , AL-C-2006-01 with Microsens Biotechnologies: Detection of the Abnormal Prion Protein in Blood by Improving the Extraction of this Protein

Description: Several conditions were examined to optimize the extraction protocol using Seprion beads for the abnormal prion protein. Different combinations of water, hexafluro-2-propanol and formic acid were used. The results of these extraction protocols showed that the magnetic beads coated with Seprion reagents were subject to degradation, themselves, when the extraction conditions that would solubilize the abnormal prion protein were used. These compounds caused interference in the immunoassay for the abnormal prion protein and rendered these protocols incompatible with the assay systems. In an attempt to overcome this problem, another approach was then used. The coated beads were used as an integral part of the assay platform. After washing away denaturing agents, the beads with the 'captured' abnormal prion were incubated directly in the immunoassay, followed by analysis by the capillary electrophoresis. When a capillary electrophoresis electro-kinetic separation was attempted, the beads disturbed the analysis making it impossible to interpret. A pressure separation method was then developed for capillary electrophoresis analysis. When 20 samples, 5 of which were positive were analyzed, the assay identified 4 of the 5 positives and had no false positives. When a larger number of samples were analyzed the results were not as good - there were false positives and false negatives. It was then observed that the amount of beads that were loaded was dependent upon how long the beads were allowed to settle before loading them into the capillary. This resulted in unacceptable variations in the results and explained that when large numbers of samples were evaluated the results were not consistent. Because the technical difficulties with using the Seprion beads could not be overcome at this time, another approach is underway that is outside of the scope of this CRADA. No further agreements have been developed. Because the results were not favorable, no manuscripts ...
Date: March 31, 2009
Creator: Schmerr, Mary Jo
Partner: UNT Libraries Government Documents Department

Feet on the potential energy surface, head in the pie clouds

Description: This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described.
Date: July 12, 2012
Creator: Smith, Quentin
Partner: UNT Libraries Government Documents Department

Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

Description: Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs’ performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical ...
Date: November 30, 2011
Creator: Cai, Min
Partner: UNT Libraries Government Documents Department

Paralization and check pointing of GPU applications through program transformation

Description: GPUs have emerged as a powerful tool for accelerating general-purpose applications. The availability of programming languages that makes writing general-purpose applications for running on GPUs tractable have consolidated GPUs as an alternative for accelerating generalpurpose applications. Among the areas that have bene#12;ted from GPU acceleration are: signal and image processing, computational uid dynamics, quantum chemistry, and, in general, the High Performance Computing (HPC) Industry. In order to continue to exploit higher levels of parallelism with GPUs, multi-GPU systems are gaining popularity. In this context, single-GPU applications are parallelized for running in multi-GPU systems. Furthermore, multi-GPU systems help to solve the GPU memory limitation for applications with large application memory footprint. Parallelizing single-GPU applications has been approached by libraries that distribute the workload at runtime, however, they impose execution overhead and are not portable. On the other hand, on traditional CPU systems, parallelization has been approached through application transformation at pre-compile time, which enhances the application to distribute the workload at application level and does not have the issues of library-based approaches. Hence, a parallelization scheme for GPU systems based on application transformation is needed. Like any computing engine of today, reliability is also a concern in GPUs. GPUs are vulnerable to transient and permanent failures. Current checkpoint/restart techniques are not suitable for systems with GPUs. Checkpointing for GPU systems present new and interesting challenges, primarily due to the natural di#11;erences imposed by the hardware design, the memory subsystem architecture, the massive number of threads, and the limited amount of synchronization among threads. Therefore, a checkpoint/restart technique suitable for GPU systems is needed. The goal of this work is to exploit higher levels of parallelism and to develop support for application-level fault tolerance in applications using multiple GPUs. Our techniques reduce the burden of enhancing single-GPU applications to support these features. ...
Date: November 15, 2012
Creator: Solano-Quinde, Lizandro Dami#19 & Laboratory], an
Partner: UNT Libraries Government Documents Department

Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

Description: The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. ...
Date: August 15, 2011
Creator: Choi, Jeong
Partner: UNT Libraries Government Documents Department

Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

Description: Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at {delta}m{sub S}={+-}1 and {delta}m{sub S}={+-}2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal may originate from the higher concentration of deep traps near cathode. A quantitative analysis based on this assumption was carried out and found to be consistent with the experimental ...
Date: December 6, 2011
Creator: Chen, Ying
Partner: UNT Libraries Government Documents Department

Computational fluid dynamic modeling of fluidized-bed polymerization reactors

Description: Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Date: November 2, 2012
Creator: Rokkam, Ram
Partner: UNT Libraries Government Documents Department