1,293 Matching Results

Search Results

Advanced search parameters have been applied.

Dynamical x-ray diffraction from an icosahedral Al-Pd-Mn quasicrystal

Description: Primary extinction effects in diffraction from single grains of Al-Pd- Mn, and presumably many other FCI alloys, may be significant and should be corrected for prior to use of diffraction data in structural determinations. Probes based on dynamical diffraction effects, such as x-ray standing wave fluorescence, multiple beam interference, and x-ray transmission topographs, may now be used to study the bulk and surface structure of some quasicrystals. The observation of dynamical diffraction from icosahedral Al-Pd-Mn is a striking confirmation of the fact that quasicrystals can present a degree of structural perfection comparable to that found in the best periodic intermetallic crystals.
Date: April 23, 1996
Creator: Kycia, S.
Partner: UNT Libraries Government Documents Department

New methods and materials for solid phase extraction and high performance liquid chromatography

Description: This paper describes methods for solid phase extraction and high performance liquid chromatography (HPLC). The following are described: Effects of Resin Sulfonation on the Retention of Polar Organic Compounds in Solid Phase Extraction; Ion-Chromatographic Separation of Alkali Metals In Non-Aqueous Solvents; Cation-Exchange Chromatography in Non-Aqueous Solvents; and Silicalite As a Stationary Phase For HPLC.
Date: April 23, 1996
Creator: Dumont, P.J.
Partner: UNT Libraries Government Documents Department

Reactive plasma atomization of aluminum nitride powder

Description: Experiments were performed to synthesize AlN powders by reacting Al with N using a conventional dc arc plasma as heat source. Feeding Al powder into Ar/N plasma open to atmosphere produced mainly Al oxide. Experiments using a chamber backfilled with nitrogen suppressed the Al oxide, but little AlN was formed. A furnace and crucible assembly was designed to feed molten Al directly into a DeLaval nozzle attached to the face of the dc arc plasma gun. Resulting submicron powders show a significant increase in AlN formation. This was dependent on chamber pressure, plasma velocity, and molten liquid feed rate. Experimental parameters, equipment design, effects of atomization/vaporization/condensation are discussed.
Date: February 1, 1997
Creator: Prichard, P.; Besser, M.; Sordelet, D. & Anderson, I.
Partner: UNT Libraries Government Documents Department

The interplay of long-range magnetic order and single-ion anisotropy in rare earth nickel germanides

Description: This dissertation is concerned with the interplay of long-range order and anisotropy in the tetragonal RNi{sub 2}Ge{sub 2} (R = rare earth) family of compounds. Microscopic magnetic structures were studied using both neutron and x-ray resonant exchange scattering (XRES) techniques. The magnetic structures of Tb, Dy, Eu and Gd members have been determined using high-quality single-crystal samples. This work has correlated a strong Fermi surface nesting to the magnetic ordering in the RNi{sub 2}Ge{sub 2} compounds. Generalized susceptibility, {chi}{sub 0}(q), calculations found nesting to be responsible for both incommensurate ordering wave vector in GdNi{sub 2}Ge{sub 2}, and the commensurate structure in EuNi{sub 2}Ge{sub 2}. A continuous transition from incommensurate to commensurate magnetic structures via band filling is predicted. The surprisingly higher T{sub N} in EuNi{sub 2}Ge{sub 2} than that in GdNi{sub 2}Ge{sub 2} is also explained. Next, all the metamagnetic phases in TbNi{sub 2}Ge{sub 2} with an applied field along the c axis have been characterized with neutron diffraction measurements. A mixed phase model for the first metamagnetic structure consisting of fully-saturated as well as reduced-moment Tb ions is presented. The moment reduction may be due to moment instability which is possible if the exchange is comparable to the low-lying CEF level splitting and the ground state is a singlet. In such a case, certain Tb sites may experience a local field below the critical value needed to reach saturation.
Date: May 10, 1999
Creator: Islam, Z.
Partner: UNT Libraries Government Documents Department

Phase reference materials for photoacoustic spectroscopy

Description: Interest in the phase of photoacoustic signals has increased greatly since the advent of phase modulation in FTIR spectroscopy. The photoacoustic phase provides information on the depth of the light-absorbing species within a solid sample. A spectroscopist needs data from a phase-reference material for standardizing phase measurements and for correcting the instrumental effects on the observed phase. Unfortunately, there is no universally accepted phase-reference material. The authors have studied the photoacoustic-signal phase and magnitude behavior for several potential phase-reference materials as a function of experimental parameters, such as beam modulation frequency, sample position in the photoacoustic cell, and cell purge gas. Theoretically, an ideal surface-absorbing material would have a photoacoustic phase that trails the phase of the excitation light by 90{degree}. They have found no material with this behavior, although some come close under a limited range of conditions. The three samples were separately sealed in the photoacoustic detector and illuminated by a red LED that was modulated at selected frequencies. The phases of the samples vary rapidly at very low frequencies because of the response of the cell microphone. Above that range, all three are within 10{degree} of the ideal 90{degree}, but each varies linearly with frequency with a different slope. The behaviors of these and other samples will be discussed in detail.
Date: June 1, 1999
Creator: Jones, R.; Bajic, S. & McClelland, J.
Partner: UNT Libraries Government Documents Department

Benefits of rapid solidification processing of modified LaNi{sub 5} alloys by high pressure gas atomization for battery applications

Description: A high pressure gas atomization approach to rapid solidification has been employed to investigate simplified processing of Sn modified LaNi{sub 5} powders that can be used for advanced Ni/metal hydride (Ni/MH) batteries. The current industrial practice involves casting large ingots followed by annealing and grinding and utilizes a complex and costly alloy design. This investigation is an attempt to produce powders for battery cathode fabrication that can be used in an as-atomized condition without annealing or grinding. Both Ar and He atomization gas were tried to investigate rapid solidification effects. Sn alloy additions were tested to promote subambient pressure absorption/desorption of hydrogen at ambient temperature. The resulting fine, spherical powders were subject to microstructural analysis, hydrogen gas cycling, and annealing experiments to evaluate suitability for Ni/MH battery applications. The results demonstrate that a brief anneal is required to homogenize the as-solidified microstructure of both Ar and He atomized powders and to achieve a suitable hydrogen absorption behavior. The Sn addition also appears to suppress cracking during hydrogen gas phase cycling in particles smaller than about 25 {micro}m. These results suggest that direct powder processing of a LaNi{sub 5{minus}x}Sn{sub x} alloy has potential application in rechargeable Ni/MH batteries.
Date: December 31, 1997
Creator: Anderson, I.E.; Pecharsky, V.K.; Ting, J.; Witham, C. & Bowman, R.C.
Partner: UNT Libraries Government Documents Department

Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

Description: The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular {beta} C-H insertion mechanism.
Date: December 31, 2002
Creator: Classen, Nathan Robert
Partner: UNT Libraries Government Documents Department

Laser: a Tool for Optimization and Enhancement of Analytical Methods

Description: In this work, we use lasers to enhance possibilities of laser desorption methods and to optimize coating procedure for capillary electrophoresis (CE). We use several different instrumental arrangements to characterize matrix-assisted laser desorption (MALD) at atmospheric pressure and in vacuum. In imaging mode, 488-nm argon-ion laser beam is deflected by two acousto-optic deflectors to scan plumes desorbed at atmospheric pressure via absorption. All absorbing species, including neutral molecules, are monitored. Interesting features, e.g. differences between the initial plume and subsequent plumes desorbed from the same spot, or the formation of two plumes from one laser shot are observed. Total plume absorbance can be correlated with the acoustic signal generated by the desorption event. A model equation for the plume velocity as a function of time is proposed. Alternatively, the use of a static laser beam for observation enables reliable determination of plume velocities even when they are very high. Static scattering detection reveals negative influence of particle spallation on MS signal. Ion formation during MALD was monitored using 193-nm light to photodissociate a portion of insulin ion plume. These results define the optimal conditions for desorbing analytes from matrices, as opposed to achieving a compromise between efficient desorption and efficient ionization as is practiced in mass spectrometry. In CE experiment, we examined changes in a poly(ethylene oxide) (PEO) coating by continuously monitoring the electroosmotic flow (EOF) in a fused-silica capillary during electrophoresis. An imaging CCD camera was used to follow the motion of a fluorescent neutral marker zone along the length of the capillary excited by 488-nm Ar-ion laser. The PEO coating was shown to reduce the velocity of EOF by more than an order of magnitude compared to a bare capillary at pH 7.0. The coating protocol was important, especially at an intermediate pH of 7.7. The increase of ...
Date: January 1, 1997
Creator: Preisler, Jan
Partner: UNT Libraries Government Documents Department

Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

Description: Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.
Date: August 5, 2003
Creator: Zou, Lijuan
Partner: UNT Libraries Government Documents Department

Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

Description: The work presented in this dissertation has investigated three distinct areas of interest in the field of quasicrystals: bulk structure, transport properties, and electronic structure. First, they have described the results of a study which explored the fundamental interactions between the atomic species of the icosahedral Al-Pd-Mn quasicrystal. The goal of this work was to determine whether the pseudo-MacKay or Bergman type clusters have a special stability or are merely a geometric coincidence. This was carried out by using laser vaporization to produce gas-phase metal clusters, which were analyzed using time-of-flight mass spectrometry. Both the kinetic and thermodynamic stabilities of the clusters were probed. The data indicated no special stability for either pseudo-MacKay or Bergman type clusters as isolated units. This, however, is not proof that these clusters are simply a geometric coincidence. It is possible that such clusters only have stability in the framework of the bulk matrix and do not exist as isolated units. Next, they have reported their investigations of the bulk thermal transport properties of a decagonal Al-Ni-Co two dimensional quasicrystal in the temperature range 373K-873K. The properties of a sample oriented along the periodic axis and another oriented along the aperiodic axis were measured. A high degree of anisotropy was observed between the aperiodic and periodic directions. Additionally, the properties were measured for a sample miscut to an orientation 45{sup o} off-axis. The properties of the miscut sample were shown to have good agreement with a theoretical model used to describe thermal transport in metallic single crystals. This model only considers thermal transport by a free-electron gas; therefore, agreement with experimental data suggests the validity of the Drude free-electron model for the decagonal Al-Ni-Co at these temperatures. Consequently, the observed anisotropy may be adequately described using classical transport equations. Transport behavior is described in terms ...
Date: August 5, 2003
Creator: Barrow, Jason A.
Partner: UNT Libraries Government Documents Department

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Description: Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.
Date: May 1, 2001
Creator: Sutherland, Kevin Jerome
Partner: UNT Libraries Government Documents Department

Functionalized Materials From Elastomers to High Performance Thermoplastics

Description: Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but ...
Date: May 31, 2003
Creator: Salazar, Laura Ann
Partner: UNT Libraries Government Documents Department

High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

Description: The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M (S/N = 3) for 5-mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.
Date: December 31, 2001
Creator: Xue, Gang
Partner: UNT Libraries Government Documents Department

The Effect of Oxygen Contamination on the Amorphous Structure of Thermally Sprayed Coatings of Cu47Ti33Zr11Ni8Si1

Description: this research has shown that it is possible to deposit coatings of gas atomized Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} powders containing various levels of oxygen contamination using plasma arc spray methods. The structure of the coating was found to depend primarily on the spray environment, with an argon atmosphere producing the most amorphous samples for a given starting powder. The oxygen content of the coatings reflected the relative levels of the oxygen contamination in the starting powders. The analysis of the starting powders displayed oxygen contents ranging from 0.125-0.79 wt.%. It was shown that higher oxygen levels lead to more crystalline structure in the starting powders as determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). This trend was found to be true for both the starting powders and for the plasma sprayed coatings. Chemical composition for all starting powders was very close to the nominal alloy composition. Chemical changes in the coatings involved the loss of Cu in coatings where high levels of oxidation were found. Cavitation erosion testing of selected coatings showed a weak trend that coatings prepared by vacuum plasma spray (VPS) had lower damage rates, but there was no clear data to indicate which coating parameters were superior. The range of data produced from testing duplicate coating was too wide to provide a good statistical measure of cavitation erosion resistance. of interest was the fact that when coatings began to show damage from cracking, all samples of a group showed similar damage and usually the damage pattern was somewhat unique to that group of samples. Failure of the coatings was due to features inherent to plasma arc spray (PAS) coating (i.e., pores, splat boundaries, oxide inclusions) rather than the mechanical characteristics of the amorphous alloy.
Date: May 27, 2002
Creator: Besser, Matthew Frank
Partner: UNT Libraries Government Documents Department

A Model for the Behavior of Magnetic Tunnel Junctions

Description: A magnetic tunnel junction is a device that changes its electrical resistance with a change in an applied magnetic field. A typical junction consists of two magnetic electrodes separated by a nonmagnetic insulating layer. The magnetizations of the two electrodes can have two possible extreme configurations, parallel and antiparallel. The antiparallel configuration is observed to have the higher measured resistance and the parallel configuration has the lower resistance. To switch between these two configurations a magnetic field is applied to the device which is primarily used to change the orientation of the magnetization of one electrode usually called the free layer, although with sufficient high magnetic field the orientation of the magnetizations of both of the electrodes can be changed. The most commonly used models for describing and explaining the electronic behavior of tunnel junctions are the Simmons model and the Brinkman model. However, both of these models were designed for simple, spin independent tunneling. The Simmons model does not address the issue of applied magnetic fields nor does it address the form of the electronic band structure in the metallic electrodes, including the important factor of spin polarization. The Brinkman model is similar, the main difference between the two models being the shape of the tunneling barrier potential between the two electrodes. Therefore, the research conducted in this thesis has developed a new theoretical model that addresses these important issues starting from basic principles. The main features of the new model include: the development of equations for true spin dependent tunneling through the insulating barrier, the differences in the orientations of the electrode magnetizations on either side of the barrier, and the effects of the density of states function on the behavior of the junction. The present work has explored densities of states that are more realistic than the ...
Date: August 5, 2003
Creator: Baker, Bryan John
Partner: UNT Libraries Government Documents Department

Organusulfur Catalysis With Reduced Molybdenum Sulfides Containing the Mo6S8 Cluster

Description: Industrial synthesis of sulfur-containing organic chemicals basically focuses on the broad categories of mercaptans (thiols), alkylsulfides (thioethers), polysulfides, and thiophenes. Of the organo-sulfur compounds produced, by far the most important in terms of quantities produced is methyl mercaptan (methanethiol or MeSH), which is produced mainly for the downstream production of methionine and methanesulfonyl chloride. Higher thiols are also used in the manufacture of rubber and plastics as polymerization regulators, chain transfer agents, or initiators. Other important organosulfur chemicals are dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), both of which are used extensively for presulfiding of industrial hydroprocessing catalysts, and substituted thiophenes which are used as intermediates for production of agrochemicals, dyes, and pharmaceuticals. Thiols are produced commercially at the rate of about 10{sup 4} ton/yr from hydrogen sulfide (H{sub 2}S) and alcohols or olefins, using homogeneous free-radical synthesis, or heterogeneous catalysts based on solid acids or supported metal oxides and/or sulfides. Despite this large production rate, and the industrial importance of the organosulfur compounds, only limited research has been devoted to the development of new catalytic materials for their synthesis. Additionally, for most organosulfur catalytic reactions, only limited information exists about reaction mechanisms, active sites, adsorbed surface species, and especially the nature of the catalysts under reaction conditions.
Date: August 27, 2002
Creator: Paskach, Thomas Jay
Partner: UNT Libraries Government Documents Department

Implementation of MP{_}Lite for the VI Architecture

Description: MP{_}Lite is a light weight message-passing library designed to deliver the maximum performance to applications in a portable and user friendly manner. The Virtual Interface (VI) architecture is a user-level communication protocol that bypasses the operating system to provide much better performance than traditional network architectures. By combining the high efficiency of MP{_}Lite and high performance of the VI architecture, they are able to implement a high performance message-passing library that has much lower latency and better throughput. The design and implementation of MP{_}Lite for M-VIA, which is a modular implementation of the VI architecture on Linux, is discussed in this thesis. By using the eager protocol for sending short messages, MP{_}Lite M-VIA has much lower latency on both Fast Ethernet and Gigabit Ethernet. The handshake protocol and RDMA mechanism provides double the throughput that MPICH can deliver for long messages. MP{_}Lite M-VIA also has the ability to channel-bonding multiple network interface cards to increase the potential bandwidth between nodes. Using multiple Fast Ethernet cards can double or even triple the maximum throughput without increasing the cost of a PC cluster greatly.
Date: December 31, 2002
Creator: Chen, Weiyi
Partner: UNT Libraries Government Documents Department

Testing of Continuous Sampling Air-ICP and Mercury Systems as Continuous Emission Monitors at the Diagnostic Instrumentation and Analysis Laboratory

Description: This report has been prepared to document the performance of the continuous sampling reduced-pressure air-ICP-AES (inductively coupled plasma--atomic emission spectroscopy) and mercury-monitor systems developed by Ames Laboratory for use as continuous emission monitors (CEM). This work was funded by the U. S. Department of Energy, Office of Environmental Management, Office of Science and Technology, through the Mixed Waste Focus Area. The purpose of the project is to develop instrumentation and methods for spectroscopic field monitoring applications. During FY00 this included continued work on the development of the continuous sample introduction system and the multi-frequency AOTF-echelle spectrometer, used in conjunction with the reduced-pressure air-ICP-AES system as a multi-metal CEM. The assembly, development, and testing of an echelle spectrometer system for the detection of mercury (Hg) by atomic absorption was also completed during FY00. The continuous sampling system and the multi-metal air-ICP and mercury-monitor CEM systems were tested at Mississippi State University at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at the end of FY00. This report describes the characteristics and performance of these systems, and the results of the field tests performed at DIAL.
Date: March 15, 2001
Creator: Baldwin, D.P.; Bajic, S.J.; Eckels, D.E.; Zamzow, D.S.; Miller, G.P.; Tao, S. et al.
Partner: UNT Libraries Government Documents Department

Miniaturized Analytical Platforms From Nanoparticle Components: Studies in the Construction, Characterization, and High-Throughput Usage of These Novel Architectures

Description: The scientific community has recently experienced an overall effort to reduce the physical size of many experimental components to the nanometer size range. This size is unique as the characteristics of this regime involve aspects of pure physics, biology, and chemistry. One extensively studied example of a nanometer sized experimental component, which acts as a junction between these three principle scientific theologies, is deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). These biopolymers not only contain the biological genetic guide to code for the production of life-sustaining materials, but are also being probed by physicists as a means to create electrical circuits and furthermore as controllable architectural and sensor motifs in the chemical disciplines. Possibly the most common nano-sized component between these sciences are nanoparticles composed of a variety of materials. The cross discipline employment of nanoparticles is evident from the vast amount of literature that has been produced from each of the individual communities within the last decade. Along these cross-discipline lines, this dissertation examines the use of several different types of nanoparticles with a wide array of surface chemistries to understand their adsorption properties and to construct unique miniaturized analytical and immunoassay platforms. This introduction will act as a literature review to provide key information regarding the synthesis and surface chemistries of several types of nanoparticles. This material will set the stage for a discussion of assembling ordered arrays of nanoparticles into functional platforms, architectures, and sensors. The introduction will also include a short explanation of the atomic force microscope that is used throughout the thesis to characterize the nanoparticle-based structures. Following the Introduction, four research chapters are presented as separate manuscripts. Chapter 1 examines the self-assembly of polymeric nanoparticles exhibiting a variety of surface chemistries and attempts to deconvolute general adsorption rules for their assembly on various substrates. ...
Date: August 5, 2003
Creator: Pris, Andrew David
Partner: UNT Libraries Government Documents Department

The Dopants and Doping Level Dependence of the Structure and Magnetic Properties of the Eu (BA1-xLRx)2Cu3O7+Theta

Description: Eu(Ba{sub 1-x}Nd{sub x}){sub 2}Cu{sub 3}O{sub 7+{delta}} were systematically studied in order to understand how the valence of the rear earth elements, ionic sizes and magnetic moment affect the crystal structure and magnetic and electrical properties. Differential thermal analyses were carried out to check the phase purity, X-ray data were least-squares fitted to determine the lattice parameters, and DC-SQUID magnetometry was used to characterize the superconducting properties. These results showed that the crystallography is consistent with other EuLR123ss series, LR = La, Pr, Eu. The lattice parameters vary with the ionic radii of the rare earth ions. Unlike the uniform change in lattice parameter, the superconducting transition did not vary systematically with the ionic size of the dopants. Although the general trend was for T{sub c} to decrease with decreasing ionic size of the dopant, for the same doping level, Pr was anomalous, depressing T{sub c} faster. Although the exact mechanism is not clear, this result is consistent with the depression of T{sub c} for Pr substitution for the rare earth in R123. The critical current J{sub c} was determined using the Bean model from magnetization versus field measurements as a function of temperature and field. The effect of the dopants on J{sub c} with the increasing of temperature or applied field was determined. For T < 77 K and small values of x, the value of J{sub c} was increased over that of the x = 0 sample. In addition, the smaller the substituting atom, the higher the J{sub c} becomes. For instance, at x = 0.025, Eu123 < EuLa.025 < EuPr.025 < EuNd.025 < EuEu.025. The enhancement of J{sub c} disappears for x > 0.05 and T > 0.5T{sub c}.
Date: December 31, 2002
Creator: Lin, Yu
Partner: UNT Libraries Government Documents Department

A Statistical Model and Computer program for Preliminary Calculations Related to the Scaling of Sensor Arrays

Description: Recent advances in sensor technology and engineering have made it possible to assemble many related sensors in a common array, often of small physical size. Sensor arrays may report an entire vector of measured values in each data collection cycle, typically one value per sensor per sampling time. The larger quantities of data provided by larger arrays certainly contain more information, however in some cases experience suggests that dramatic increases in array size do not always lead to corresponding improvements in the practical value of the data. The work leading to this report was motivated by the need to develop computational planning tools to approximate the relative effectiveness of arrays of different size (or scale) in a wide variety of contexts. The basis of the work is a statistical model of a generic sensor array. It includes features representing measurement error, both common to all sensors and independent from sensor to sensor, and the stochastic relationships between the quantities to be measured by the sensors. The model can be used to assess the effectiveness of hypothetical arrays in classifying objects or events from two classes. A computer program is presented for evaluating the misclassification rates which can be expected when arrays are calibrated using a given number of training samples, or the number of training samples required to attain a given level of classification accuracy. The program is also available via email from the first author for a limited time.
Date: April 1, 2001
Creator: Morris, Max
Partner: UNT Libraries Government Documents Department

Remote Field Eddy Current Probes for the Detection of Stress Corrosion in Transmission Pipelines

Description: Magnetic flux leakage (MFL) is a technique used widely in non-destructive testing (NDT) of natural gas and petroleum transmission pipelines. This inspection method relies on magnetizing the pipe-wall in axial direction. The MFL inspection tool is equipped with an array of Hall sensors located around the circumference of the pipe, which registers the flux leakage caused by any defects present in the pipe-wall. Currently, the tool magnetizes the pipewall in axial direction making it largely insensitive to axially oriented defects. One type of defect, which is of a growing concern in the gas and petroleum industry is the stress corrosion crack (SCC). The SCCs are a result of aging, corrosion, fatigue and thermal stresses. SCCs are predominantly axially oriented and are extremely tight, which makes them impossible to be detected using current inspection technology. A possible solution to this problem is to utilize the remote field eddy current (RFEC) effect to detect axially oriented defects. The RFEC method has been widely used in industry in the inspection of tubular products. The method uses a pair of excitation and pick-up coils. The pick-up coil located in the remote field region, usually two, three pipe-diameters away from the excitation coil. With RFEC the presence of defects is detected by the disturbance in the phase of the signal measured by the pick-up coil relative to that of the excitation coil. Unlike conventional eddy current testing the RFEC method is sensitive to defects on the exterior of the inspected product, which makes it a good candidate for the development of in-line inspection technology. This work focuses on the development of non-destructive testing technique, which uses remote field eddy currents induced by rotating magnetic field (RMF). A major advantage of the RMF is that it makes possible to not only detect a defect but also ...
Date: August 27, 2002
Creator: Ivanov, Plamen Alexandroz
Partner: UNT Libraries Government Documents Department