157 Matching Results

Search Results

Advanced search parameters have been applied.

Final Report to Jupiter Oxygen Corporation on CRADA Phase 1 Activities, January 1, 2004, through June 30, 2005

Description: In January of 2004, a Cooperative Research and Development Agreement was signed with the Jupiter Oxygen Corporation; its term extends from January 2004 to January 1, 2009. The statement of work is attached as Appendix A. Under Phase I of this agreement, ARC was to provide technical expertise to develop computer models of existing power plants relative to retrofitting with oxy-fuel combustion; help design experiments to verify models and analyze data from experiments; help produce designs at larger scales; help design a new technology oxy-fuel power plant; and co-author technical papers on this work for presentation at appropriate conferences.
Date: June 30, 2005
Creator: Summers, Cathy A.; Oryshchyn, Danylo B.; Ochs, Thomas L. & Turner, Paul C.
Partner: UNT Libraries Government Documents Department

Jupiter Oxygen Corporation/Albany Research Center Crada Progress Report, September

Description: The Albany Research Center (ARC) has developed a new Integrated Pollutant Removal (IPR) process for fossil-fueled boilers. Pursuant to a cooperative research and development agreement (CRADA) with Jupiter Oxygen Corporation, ARC currently is studying the IPR process as applied to the oxygen fuel technology developed by Jupiter. As discussed further below, these two new technologies are complementary. This interim report summarizes the study results to date and outlines the potential activities under the next phase of the CRADA with Jupiter.
Date: September 13, 2004
Creator: Turner, Paul C. & Schoenfield, Mark (Jupiter Oxygen Corp.)
Partner: UNT Libraries Government Documents Department

Oxidation resistance of 9-12% Cr steels: effect of rare earth surface treatment

Description: Medium Cr steels have been used in fossil fired power plants for many years because of their excellent high temperature stability and mechanical properties. The environment in a fossil fired power plant is extremely aggressive in terms of corrosion, especially oxidation. This is only accelerated as the operating temperature increases to 650C and beyond. For any new steel to be qualified for power plant use, in addition to adequate strength at the operating temperature, material wastage from all corrosion processes must be kept to a minimum acceptable level. The use of medium Cr steels provides a means to improve overall corrosion resistance. Three medium Cr are under development for use as high temperature power plant steels: 0.08C-(9-12)Cr-1.2Ni-0.7Mo-3.0Cu-3.0Co-0.5Ti. Oxidation tests were performed on the steels for times greater than 1000 hours in order to determine the oxidation kinetics and extent of material wastage. Also, rare earth oxides were incorporated into the outer surface layers of the steels to see if the oxidation resistance could be improved. These results will be compared to current power plant steels.
Date: February 1, 2005
Creator: Dogan, Omer N.; Alman, David A. & Jablonski, Paul D.
Partner: UNT Libraries Government Documents Department

Integrated pollutant removal: modeling and experimentation

Description: Experimental and computational work at the Albany Research Center, USDOE is investigating an integrated pollutant removal (IPR) process which removes all pollutants from flue gas, including SOX, NOX, particulates, CO2, and Hg. In combination with flue gas recirculation, heat recovery, and oxy-fuel combustion, the process produces solid, gas, and liquid waste streams. The gas exhaust stream comprises O2 and N2. Liquid streams contain H2O, SOX, NOX, and CO2. Computer modeling and low to moderate pressure experimentation are defining system chemistry with respect to SOX and H2O as well as heat and mass transfer for the IPR process.
Date: January 1, 2005
Creator: Ochs, Thomas L.; Oryshchyn, Danylo B. & Summers, Cathy A.
Partner: UNT Libraries Government Documents Department

Design, Construction and Operation Of A High Pressure Flow Loop Reactor For Carbon Sequestration

Description: The Department of Energy’s Albany Research Center has been exploring the possibility of direct mineral carbonation as a means of sequestering carbon dioxide. As part of this research, a three-phase flow through reactor capable of operating at 200°C and 2500 psia was built. The reactor is a plug flow reactor with continuous and complete recycle. The results from this reactor may be used to design a larger and truly continuous flow reactor. This paper describes the design, construction and operation of this reactor. The extent of reaction, pressure drop across the pump and static mixers were measured at various test conditions. The extent of reaction was then compared to the results achievable in an autoclave.
Date: November 1, 2003
Creator: Gerdemann, Stephen J., Penner, Larry R.
Partner: UNT Libraries Government Documents Department

Development of chromium-tungsten alloys

Description: Cr alloys containing 0-30 weight % W were investigated for their high temperature strength and oxidation resistance. These experimental alloys are intended for use in elevated temperature applications. Alloys were melted in a water-cooled, copper-hearth arc furnace. Microstructure of the alloys was studied using X-ray diffraction, scanning electron microscopy, and light microscopy. Meyer and Vickers hardness tests were utilized for measuring room temperature strength. A hot hardness tester with a spherical ruby indenter was used to study the strength of these materials between 800ºC and 1200ºC. A parabolic relationship was observed between load and indent size at all temperatures. On the other hand, decrease in hardness of the alloys with temperature was linear up to 1200ºC.
Date: March 1, 2004
Creator: Dogan, Omer N.; Alman, David E. & Hawk, Jeffrey A.
Partner: UNT Libraries Government Documents Department

Corrosion behavior of rebar for intermittent cathodic protection of coastal bridges

Description: A number of reinforced concrete bridges on the Oregon coast are protected against chloride-induced corrosion damage by means of impressed current cathodic protection (ICCP). Thermal-sprayed Zn serves as the anode in these systems. Rebar in the concrete can remain passive and protected for some period of time after the CP system is turned off. The active-passive corrosion behavior of rebar in simulated pore solution (SPS) was investigated as a function of pH and Cl- concentration as part of a study of intermittent ICCP operation. Rebar corrosion rates in SPS were determined from polarization curves by fitting the Butler-Volmer equation and the linear polarization equation. Analysis of the passive film in SPS by x-ray diffraction and surface enhanced Raman spectroscopy showed it to be largely Fe3O4. However, the Fe(OH)2 content increased with cathodic polarization time.
Date: February 1, 2001
Creator: Ziomek-Moroz, M. | Cramer, S.D. | Covino, B.S., Jr. | Bullard, S.J. | Holcomb, G.R. | Russell, J.H. | Windisch, Jr., C.F. (PNNL)
Partner: UNT Libraries Government Documents Department

Atmospheric Corrosion of Aluminum Alloy 3105 in Coastal Environments: Interim Report After 15 Months Exposure

Description: In May of 1994, racks of corrosion samples were installed along the Oregon coast. The aluminum alloy 3105 samples were mounted on utility poles in Astoria, Manzanita, Lincoln City, Gold Beach, Brookings, Portland, and Albany. At each coastal location, samples were placed on four different poles at various distances from the coast (from as near as 50 feet to as far as 5 miles). The inland sites (Portland and Albany) have only one pole per site and are used as control sites. Besides the 3105 alloys, 5052 and 6061 aluminum alloys were placed at all sites. Since installation, one rack was lost due to the pole being taken down by the phone company (in Lincoln City), but the rest of the poles and racks are still in place.<br> <br> In August of 1995, the aluminum samples were visually inspected, and the remaining six 3105 aluminum samples in Lincoln City were removed for laboratory examination. Non-destructive x-ray analysis was used on the Lincoln City samples to obtain information a bout the nature of the corrosion products. Because the analysis was performed while the corrosion products remained on the surface, aluminum peaks dominated the diffraction pattern, and relative peak-heights were different from normal. Nevertheless, some minerals were identified as part of the corrosion products.
Date: April 19, 1996
Creator: Holcomb, G. R.
Partner: UNT Libraries Government Documents Department

Dual Environment Effects on the Oxidation of Metallic Interconnects

Description: Metallic interconnects in solid oxide fuel cells are exposed to a dual environment: fuel on one side (i.e. H<sub>2</sub> gas) and oxidizer on the other side (i.e. air). It has been observed that the oxidation behavior of thin stainless steel sheet in air is changed by the presence of H<sub>2</sub> on the other side of the sheet. The resulting dual environment scales are flaky and more friable than the single environment scales. The H<sub>2</sub> disrupts the scale on the air-side. A model to explain some of the effects of a dual environment is presented where hydrogen diffusing through the stainless steel sheet reacts with oxygen diffusing through the scale to form water vapor, which has sufficient vapor pressure to mechanically disrupt the scale. Experiments on preoxidized 316L stainless steel tubing exposed to air/air, H<sub>2</sub>/air, and H<sub>2</sub>/Ar environments are reported in support of the model.
Date: October 20, 2004
Creator: Holcomb, Gordon R.; Ziomek-Moroz, Malgorzata; Cramer, Stephen D.; Covino, Jr., Bernard S. & and Bullard, Sophie J.
Partner: UNT Libraries Government Documents Department

The Effect of Manganese Additions on the Reactive Evaporation of Chromium in Ni-Cr Alloys

Description: Chromium is used as an alloy addition in stainless steels and nickel-chromium alloys to form protective chromium oxide scales. Chromium oxide undergoes reactive evaporation in high temperature exposures in the presence of oxygen and/or water vapor. The deposition of gaseous chromium species onto solid oxide fuel cell electrodes can reduce the efficiency of the fuel cell. Manganese additions to the alloy can reduce the activity of chromium in the oxide, either from solid solution replacement of chromium with manganese (at low levels of manganese) or from the formation of manganese-chromium spinels (at high levels of manganese). This reduction in chromium activity leads to a predicted reduction in chromium evaporation by as much as a factor of 35 at 800 C and 55 at 700 C. The results of evaporation loss measurements on nickel-chromium-manganese alloys are compared with the predicted reduction. Quantifying the effects of manganese additions on chromium evaporation should aid alloy development of metallic interconnects and balance-of-plant alloys.
Date: October 20, 2004
Creator: Holcomb, Gordon R. & Alman, David E.
Partner: UNT Libraries Government Documents Department

Electrochemical Noise Sensors for Detection of Localized and General Corrosion of Natural Gas Transmission Pipelines. Final Report for the Period July 2001-October 2002

Description: The U.S. Department of Energy, National Energy Technology Laboratory funded a Natural Gas Infrastructure Reliability program directed at increasing and enhancing research and development activities in topics such as remote leak detection, pipe inspection, and repair technologies and materials. The Albany Research Center (ARC), U.S. Department of Energy was funded to study the use of electrochemical noise sensors for detection of localized and general corrosion of natural gas transmission pipelines. As part of this, ARC entered into a collaborative effort with the corrosion sensor industry to demonstrate the capabilities of commercially available remote corrosion sensors for use with the Nation's Gas Transmission Pipeline Infrastructure needs. The goal of the research was to develop an emerging corrosion sensor technology into a monitor for the type and degree of corrosion occurring at key locations in gas transmission pipelines.
Date: December 2002
Creator: Bullard, Sophie J.; Covino, Bernard S., Jr.; Russell, James H.; Holcomb, Gordon R.; Cramer, Stephen D. & Ziomek-Moroz, Margaret
Partner: UNT Libraries Government Documents Department

Analysis of Staining Observed on Structures in the Georgetown, South Carolina Area

Description: Beginning around 1970, the Georgetown, SC, community complained about black dust and red stains collecting on houses, cars, boats, and other structures. The community, through the South Carolina Department of Health and Environmental Control (SCDHEC), seeks to identify the source or cause of the staining and ways to reduce or eliminate it in the future.
Date: May 2002
Creator: Cramer, Stephen D.; Covino, Bernard S., Jr. & Govier, R. Dale
Partner: UNT Libraries Government Documents Department

The Effect of Silicon and Aluminum Additions on the Oxidation Resistance of Lean Chromium Stainless Steels

Description: The effect of Si and Al additions on the oxidation of lean chromium austenitic stainless steels has been studied. A baseline composition of Fe-16Cr-16Ni-2Mn-1Mo was selected to allow combined Si and Al additions of up to 5 wt. pct. in a fully austenitic alloy. The baseline composition was selected using a net Cr equivalent equation to predict the onset of G-ferrite formation in austenite. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700 C to 800 C. Oxidation resistance of alloys with Si only additions were outstanding, particularly at 800 C. It was evident that different rate controlling mechanisms for oxidation were operative at 700 C and 800 C in the Si alloys. In addition, Si alloys pre-oxidized at 800 C, showed a zero weight gain in subsequent testing for 1000 hours at 700 C. The rate controlling mechanism in alloys with combined Si and Al addition for oxidation at 800 C was also different than alloys with Si only. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms.
Date: September 2001
Creator: Dunning, J. S.; Alman, D. E. & Rawers, J. C.
Partner: UNT Libraries Government Documents Department

Remote Handled Transuranic Sludge Retrieval Transfer And Storage System At Hanford

Description: This paper describes the systems developed for processing and interim storage of the sludge managed as remote-handled transuranic (RH-TRU). An experienced, integrated CH2M HILL/AFS team was formed to design and build systems to retrieve, interim store, and treat for disposal the K West Basin sludge, namely the Sludge Treatment Project (STP). A system has been designed and is being constructed for retrieval and interim storage, namely the Engineered Container Retrieval, Transfer and Storage System (ECRTS).
Date: October 18, 2012
Creator: Raymond, Rick E.; Frederickson, James R.; Criddle, James; Hamilton, Dennis & Johnson, Mike W.
Partner: UNT Libraries Government Documents Department

Reactive sintering of TiAl–Ti5Si3 in situ composites

Description: TiAl with between 0 and 20 vol%Ti5Si3 was produced by reactive sintering (700 °C for 15 min in vacuum) of cold pressed compacts of elemental Ti, Al and Si powder. The results show that adding Si to Ti and Al reduces the swelling associated with reactive sintering of TiAl, as composites containing more than 5 vol%Ti5Si3 densified during reactive sintering. However, composites containing more than 10 vol%Ti5Si3 did not retain their shape and the TiAl+20 vol%Ti5Si3 composite completely melted during the sintering process. A thermodynamic analysis indicated that the simultaneous formation of TiAl and Ti5Si3 increases the adiabatic flame temperature during the reaction between the powders. In fact, the analysis predicted that the maximum temperature of the reaction associated with the formation TiAl+20 vol%Ti5Si3 should exceed the melting point of TiAl, and this was observed experimentally. Differential thermal analysis (DTA) revealed that an Al–Si eutectic reaction occurred in mixtures of Ti, Al and Si powders prior to the formation of the TiAl and Ti5Si3 phases. There was no such pre-reaction formation of a eutectic liquid in Ti and Al powder mixtures. The formation of the pre-reaction liquid and the increase in adiabatic flame temperature resulted in the melting that occurred and the enhanced densification (minimization of swelling) during reactive sintering of the in situ composites.
Date: June 1, 2005
Creator: Alman, David E.
Partner: UNT Libraries Government Documents Department

A ceramographic evaluation of chromia refractories corroded by slag

Description: This paper describes the ceramographic preparation of Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3} refractory bricks and subsequent microstructural analysis to determine the corrosive effects of molten slag. The porous and friable nature of the brick, especially after exposure to the slag or its individual components, presented some problems in the preparation.
Date: January 1, 2001
Creator: Hunt, Alton H. & Chinn, Richard E.
Partner: UNT Libraries Government Documents Department

Cathodic Protection of the Yaquina Bay Bridge

Description: The Yaquina Bay Bridge in Newport, Oregon, was designed by Conde B. McCullough and built in 1936. The 3,223-foot (982 m) structure is a combination of concrete arch approach spans and a steel through arch over the shipping channel. Cathodic protection is used to prevent corrosion damage to the concrete arches. The Oregon Department of Transportation (Oregon DOT) installed a carbon anode coating (DAC-85) on two of the north approach spans in 1985. This anode was operated at a current density of 6.6 mA/m2(0.6 mA/ft2). No failure of the conductive anode was observed in 1990, five years after application, or in 2000, 15 years after application. Thermal-sprayed zinc anodes 20 mils (0.5 mm) thick were applied to half the south approach spans beginning in 1990. Thermal-sprayed zinc anodes 15 mils (0.4 mm) thick were applied to the remaining spans in 1996. These anodes were operated at a current density of 2.2 mA/m2(0.2 mA/ft2). In 1999, four zones on the approach spans were included in a two-year field trial of humectants to improve zinc anode performance. The humectants LiNO3 and LiBr were applied to two zones; the two adjacent zones were left untreated as controls. The humectants substantially reduced circuit resistance compared to the controls.
Date: February 1, 2001
Creator: Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Laylor, H.M. et al.
Partner: UNT Libraries Government Documents Department

Induction Furnace Testing of the Durability of Prototype Crucibles in a Molten Metal Environment

Description: Engineered ceramic crucibles are commonly used to contain molten metal. Besides high temperature stability, other desired crucible characteristics include thermal shock resistance, minimal reaction with the molten metal and resistance to attack from the base metal oxide formed during melting. When used in an induction furnace, they can be employed as a “semi-permanent” crucible incorporating a dry ram backup and a ceramic cap. This report covers several 250-lb single melt crucible tests in an air melt induction furnace. These tests consisted of melting a charge of 17-4PH stainless steel, holding the charge molten for two hours before pouring off the heat and then subsequently sectioning the crucible to review the extent of erosion, penetration and other physical characteristics. Selected temperature readings were made throughout each melt. Chemistry samples were also taken from each heat periodically throughout the hold. The manganese level was observed to affect the rate of chromium loss in a non-linear fashion.
Date: 2005-09~
Creator: Jablonski, Paul D.
Partner: UNT Libraries Government Documents Department

Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center

Description: In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation.
Date: September 1, 2005
Creator: Jablonski, Paul D. & Turner, Paul C.
Partner: UNT Libraries Government Documents Department