36 Matching Results

Search Results

Advanced search parameters have been applied.

Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes; Quarterly MCLR program technical progress report, 1 October 1993--31 December 1993

Description: The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. The work is guided by an Advisory Committee consisting of technical experts from the refrigeration and air-conditioning industry and government agencies. The AirConditioning and Refrigeration Technology Institute, Inc., (ARTI) manages and contracts multiple research projects and a data collection and dissemination effort. Detailed results from these projects are reported in technical reports prepared by each subcontractor.
Date: January 1, 1994
Creator: Szymurski, S.R.; Hourahan, G.C. & Godwin, D.S.
Partner: UNT Libraries Government Documents Department

Investigation into the fractionation of refrigerant blends. Final technical report, March 1994--December 1995

Description: As a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional CFC and HCFC refrigerants which contribute to the global ozone depletion effects, the HVAC industry is vigorously evaluating and testing BFC refrigerant blends. While analyses and system performance tools have shown that BFC refrigerant blends offer certain performance, capacity and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program is to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects and convey to the industry safe and reliable approaches. As a result, analytical models, verified by laboratory data, have been developed that predict the fractionation effects of HFC refrigerant blends when (1) exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system startup, operation and shutdown within various system components (where two-phase refrigerant exists), and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing HFC-32, HFC-134a, and HFC-125 and the data are generalized for various operating conditions and scenarios.
Date: January 1, 1996
Creator: Biancardi, F.R.; Michels, H.; Sienel, T. & Pandy, D.
Partner: UNT Libraries Government Documents Department

Thermophysical properties of HCFC alternatives. Quarterly report, 1 April 1996--30 June 1996

Description: Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.
Date: July 1, 1996
Creator: Haynes, W.M.
Partner: UNT Libraries Government Documents Department

Potentially useful polyolester lubricant additives an overview of antioxidants, antiwear and antiseize compounds

Description: Reliable service lubrication of compressors with polyolesters that do not contain additives is the optimal goal for hermetic compressor use. Chlorine derived from CFC and HCFC refrigerants is reported to have effective antiwear properties and negates the widespread use of additives in mineral oil lubricated systems. The use of antioxidants for mineral oil and polyolesters have been reported; antioxidant additive activity seems essential for polyolesters.- Antiwear and antiseize additives seem to be a short term goal for use with polyolesters. High silicone aluminum to steel wear seems to be a primary target for additive use. The interaction of specific heteroatom organic compounds with highly polar surface active synthetic polyolester lubricants is complex. Results of an extensive literature search describe results from a service base determined at ambient conditions. Known lubricant additives used in the hermetic compressor industry, the. mode of action of several types of additives and some lubricant additive chemistry that demonstrates selective thermal stability in conjunction with the chemical structure are examined.
Date: November 1, 1996
Creator: Cavestri, R.C.
Partner: UNT Libraries Government Documents Department

Materials compatibility and lubricants research on CFC-refrigerant substitutes. Quarterly report, October 1, 1995--December 31, 1995

Description: The quarterly status report for the Materials Compatibility and Lubricants Research Program is presented. Objectives for 1 October 1995--31 December 1995 include completion of contract negotiations for Study of Foaming Characteristics project, and finalizing Phase IV and Phase V projects.
Date: February 1, 1996
Creator: Szymurski, S.R.
Partner: UNT Libraries Government Documents Department

Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume II - data tables, high pressure refrigerants

Description: Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.
Date: October 1, 1996
Creator: Doerr, R.G. & Waite, T.D.
Partner: UNT Libraries Government Documents Department

ARTI refrigerant database

Description: The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.
Date: July 1, 1996
Creator: Calm, J.M.
Partner: UNT Libraries Government Documents Department

Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume 1

Description: Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours. The original refrigerants and the Alternatives tested for retrofit were as follows: Most motor materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) were compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant. This was attributed to solution of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) found in Mylar and Melinex sheet and sleeving insulations was initially observed, but subsequent tests under dry conditions showed that embrittlement of the PET materials was caused by moisture present during the exposure. Compatibility tests of elastomers with R-245ca, retrofitted from R-11 and R-123, showed that the nitrile was compatible with both R-11 and R-245ca, but not with R-123. The neoprene was unsatisfactory because of shrinkage in the R-245ca.
Date: October 1, 1996
Creator: Doerr, R.G. & Waite, T.D.
Partner: UNT Libraries Government Documents Department

Investigation of flushing and clean-out methods for refrigeration equipment to ensure system compatibility

Description: SECTION 608 of the Clean Air Act Amendments has altered much of the refrigeration service contracting industry. MCLR Project Number 660-52502 was established to examine two areas where the Amendments are influencing contractors to determine if more cost-effective service procedures might be developed. One area where existing service procedures are being revisited involves the removal of contaminants from a refrigeration system after a motor burnout. At one time, a Class 1 substance such as CFC-11 or CFC-113 was used as a flushing agent for cleaning a system after a burnout. On large systems, the compressor was disassembled, and the parts were cleaned using 1,1,1-trichloroethane (TCA) or a TCA-containing mixture. Such alternatives are seldom possible today, as the manufacture of Class 1 substances was banned on January 1, 1996. This report describes processes for mineral oil removal, process alternatives for servicing burnouts, solvents, and laboratory retrofit tests.
Date: April 24, 1996
Creator: Byrne, J.J.; Shows, M. & Abel, M.W.
Partner: UNT Libraries Government Documents Department

Docmentation of newly developed methods to assess material compatibility in refrigeration and air-conditioning applications. Final report, 1 October 1993--31 August 1994

Description: This document summarizes the experimental methods used during the materials compatibility and lubricants research program (MCLR). The MCLR program was jointly sponsored by the U.S. Department of Energy and the air-conditioning and refrigeration industry. The individual projects were managed by the Air-Conditioning and Refrigeration Technology Institute. The projects presented in this report are: Chemical and Thermal Stability of Refrigerant/Lubricant Mixtures with Metals, Miscibility of Lubricants with Refrigerants, Compatibility of Refrigerants and Lubricants with Motor Materials, Compatibility of Refrigerants and Lubricants with Elastomers, Compatibility of Refrigerants and Lubricants with Engineering Plastics and Sealed Tube Comparisons of the Compatibility of Desiccants with Refrigerants and Lubricants.
Date: August 1, 1994
Creator: Hawley, M.
Partner: UNT Libraries Government Documents Department

ARTI refrigerant database

Description: The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. it consolidates and facilitates.access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.
Date: January 15, 1996
Creator: Calm, J.M.
Partner: UNT Libraries Government Documents Department

Compatibility of refrigerants and lubricants with electrical sheet insulation under retrofit conditions

Description: To determine whether exposure to the original refrigerant/mineral oil would affect compatibility of sheet insulation with alternative refrigerant/lubricant after retrofit, sheet insulation was exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Most of the sheet insulation materials exposed to the alternative refrigerant and lubricant (after an initial exposure to the original refrigerant and mineral oil) appeared to be compatible with the alternative refrigerant and lubricant. The only concern was delamination and blistering of the sheet insulation containing Nomex, especially after removal of absorbed refrigerant at high temperature. This was attributed to incompatibility of the adhesive and not to the Nomex itself. Embrittlement of the polyethylene terephthalate (PET) sheet was initially observed, but 2048 subsequent tests under extremely dry conditions showed that embrittlement of the PET materials was attributed to moisture present during the exposure.
Date: November 1, 1996
Creator: Doerr, R.G. & Waite, T.D.
Partner: UNT Libraries Government Documents Department

Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume IV - pictures

Description: Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.
Date: October 1, 1996
Creator: Doerr, R.G. & Waite, T.D.
Partner: UNT Libraries Government Documents Department

Compatibility of refrigerants and lubricants with motor materials under retrofit conditions. Final report, Volume III - data tables, low pressure refrigerants

Description: Compatibility tests were conducted on motor materials to determine if exposure to the original refrigerant/mineral oil would affect compatibility of the motor materials after retrofit to the alternative refrigerant/lubricant. The motor materials were exposed at elevated temperature to the original refrigerant and mineral oil for 500 hours, followed by exposure to the alternative refrigerant and lubricant for 500 hours. Measurements were also taken after 168 and 336 hours. As a control, some samples were exposed to the original refrigerant/mineral oil for a total of 1000 hours.
Date: October 1, 1996
Creator: Doerr, R.G. & Waite, T.D.
Partner: UNT Libraries Government Documents Department

Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

Description: Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.
Date: July 1, 1997
Creator: Cavestri, R.C.
Partner: UNT Libraries Government Documents Department

Thermophysical properties of HCFC alternatives. Quarterly report, October 1, 1994--December 31, 1994

Description: Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.
Date: January 1, 1995
Creator: Haynes, W.M.
Partner: UNT Libraries Government Documents Department

Thermophysical properties of HCFC alternatives. Quarterly report, 1 January 1996--31 March 1996

Description: Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.
Date: April 1, 1996
Creator: Haynes, W.M.
Partner: UNT Libraries Government Documents Department

Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants. First draft of final report of part one and quarterly report of part two, January 3, 1994--November 30, 1994

Description: Included in this report is a compiled partial list of presently used processing materials in the air-conditioning and refrigeration industry and the manufacturers, intended uses, and applications of each. Also listed are the processing materials that have received final acceptance for this contracted study. An analytical methodology discussion is presented, including the final decision and the limitations of said methodology, as well as how to establish a level of confidence in observed immiscible material components in two 32 ISO VG polyolesters: (1) Mobil EAL Arctic 32; and (2) ICI Emkarate RL32H; both with HFC 134a refrigerant solutions.
Date: November 1, 1994
Creator: Cavestri, R.C.
Partner: UNT Libraries Government Documents Department

ARTI Refrigerant Database

Description: The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase-out of chemical compounds of environmental concern.
Date: February 1995
Creator: Calm, J. M.
Partner: UNT Libraries Government Documents Department

Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

Description: In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.
Date: April 19, 1995
Creator: Ellis, P.F. II & Ferguson, A.F.
Partner: UNT Libraries Government Documents Department

Impact of air and refrigerant maldistributions on the performance of finned-tube evaporators with R-22 and R-407C. Final Report

Description: The report presents basic features of the evaporator model, EVAP5M, and simulation results for an evaporator operating with R-22 and R-407C at non-uniform air and refrigerant distributions. EVAP5M was developed under this project to provide a tool for simulating a finned-tube air-to refrigerant evaporator operating with single-component refrigerants and refrigerant mixtures. The tube-by-tube modeling approach allowed for one-dimensional non-uniformity in the air velocity profile and arbitrary maldistribution on the refrigerant side. The model uses the Carnahan-Starling-DeSantis equation of state for calculating refrigerant thermodynamic properties. Simulations were performed for three evaporator slabs with different refrigerant circuitry designs. For the maldistributions studied, maldistributed air caused much more significant capacity degradation than maldistributed refrigerant. In some cases capacity decreased to as low as 57 percent of the value obtained for uniform velocity profile. Simulation results showed that R-22 and R-407C have similar susceptibility to capacity degradation. Relative change of capacity varied depending on the evaporator design and maldistribution studied. 17 refs., 18 figs., 9 tabs.
Date: July 1, 1997
Creator: Lee, Jangho & Domanski, P.A.
Partner: UNT Libraries Government Documents Department

Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

Description: This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.
Date: July 1, 1996
Creator: Cavestri, R.C. & Schooley, D.L.
Partner: UNT Libraries Government Documents Department

Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

Description: Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.
Date: March 1, 1996
Creator: Keuper, E.F.
Partner: UNT Libraries Government Documents Department

Thermophysical properties of HCFC alternatives. Quarterly report, 1 July 1995--30 September 1995

Description: Numerous fluids and fluid mixtures have been identified as promising alternatives to the HCFC refrigerants, but, for many of them, reliable thermodynamic data do not exist. In particular, reliable thermodynamic properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to measure, with high accuracy, selected thermodynamic properties data for two pure refrigerants and nine refrigerant blends; these data will be used to fit equations of state and other property models which can be used in equipment design. The new data will fill in gaps in the existing data and resolve problems and differences that exist in and between existing data sets. Most of the studied fluids and blends are potential replacements for HCFC-22 and/or R502; in addition, one pure fluid and one blend are potential replacements for CFC-13 in low temperature refrigeration applications.
Date: October 1995
Creator: Haynes, W. M.
Partner: UNT Libraries Government Documents Department