6,034 Matching Results

Search Results

Calix 2007:9th International Conference on Calixarene Chemistry

Description: The DOE funds helped support an International Conference, Calix 2007, whose focus was on Supramolecular Chemistry. The conference was held at the University of Maryland from August 6-9, 2007 (Figure 1). The conference website is at www.chem.umd.edu/Conferences/Calix2007. This biannual conference had previously been held in the Czech Republic (2005), Canada (2003), Netherlands (2001), Australia (1999), Italy (1997), USA (Fort Worth, 1995) Japan (1993) and Germany (1991). Calixarenes are cup-shaped compounds that are a major part of Supramolecular Chemistry, for which Cram, Lehn and Pederson were awarded a Nobel Prize 20 years ago. Calixarene chemistry has expanded greatly in the last 2 decades, as these compounds are used in synthetic and mechanistic chemistry, separations science, materials science, nanoscience and biological chemistry. The organizing committee was quite happy that Calix 2007 encompassed the broad scope and interdisciplinary nature of the field. Our goal was to bring together leading scientists interested in calixarenes, molecular recognition, nanoscience and supramolecular chemistry. We believe that new research directions and collaborations resulted from an exchange of ideas between conferees. This grant from the DOE was crucial toward achieving that goal, as the funds helped cover some of the registration and accommodations costs for the speakers.
Date: September 9, 2011
Creator: Davis, Jeffery
Partner: UNT Libraries Government Documents Department

A novel family of small proteins that affect plant development

Description: The DVL genes represent a new group of plant proteins that influence plant growth and development. Overexpression of DVL1, and other members of the DVL family, causes striking phenotypic changes. The DVL proteins share sequence homology in their C-terminal half. Point mutations in the C-terminal domain show it is necessary and deletion studies demonstrate the C-terminal domain is sufficient to confer the overexpression phenotypes. The phenotypes observed, and the conservation of the protein sequence in the plant kingdom, does suggest the DVL proteins have a role in modulating plant growth and development. Our working hypothesis is the DVL proteins function as regulators of cellular signaling pathways that control growth and development.
Date: April 29, 2011
Creator: Walker, John Charles
Partner: UNT Libraries Government Documents Department

Instability Control in a Staged Z-pinch

Description: A \Staged Z-Pinch” is a fusion-energy concept in which stored-electric energy is first converted into plasma-liner-kinetic energy, and then transferred to a coaxialtarget plasma [H. U. Rahman, F. J. Wessel, and N. Rostoker, Phys. Rev. Lett. 74, p. 714(1996)]. Proper choice of the liner and target materials, and their initial radii and mass densities, leads to dynamic stabilization, current amplification, and shock heating of the target. Simulations suggest that this configuration has merit as a alternative inertial-confinement-fusion concept, and may provide an energy release exceeding thermonuclear break-even, if tested on one of many newer pulsed power systems, for example those located at Sandia National Laboratories.
Date: April 22, 2011
Creator: WESSEL, Frank J.
Partner: UNT Libraries Government Documents Department

High-efficiency photovoltaics based on semiconductor nanostructures

Description: The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.
Date: October 31, 2011
Creator: Yu, Paul K. L.; Yu, Edward T. & Wang, Deli
Partner: UNT Libraries Government Documents Department

LaserFest Celebration

Description: LaserFest was the yearlong celebration, during 2010, of the 50th anniversary of the demonstration of the first working laser. The goals of LaserFest were: to highlight the impact of the laser in its manifold commercial, industrial and medical applications, and as a tool for ongoing scientific research; to use the laser as one example that illustrates, more generally, the route from scientific innovation to technological application; to use the laser as a vehicle for outreach, to stimulate interest among students and the public in aspects of physical science; to recognize and honor the pioneers who developed the laser and its many applications; to increase awareness among policymakers of the importance of R&D funding as evidenced by such technology as lasers. One way in which LaserFest sought to meet its goals was to encourage relevant activities at a local level all across the country -- and also abroad -- that would be identified with the larger purposes of the celebration and would carry the LaserFest name. Organizers were encouraged to record and advertise these events through a continually updated web-based calendar. Four projects were explicitly detailed in the proposals: 1) LaserFest on the Road; 2) Videos; 3) Educational material; and 4) Laser Days.
Date: August 25, 2011
Creator: Chodos, Alan & Rogan, Elizabeth A.
Partner: UNT Libraries Government Documents Department

New Manufacturing Method for Paper Filler and Fiber Material

Description: The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp. The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12” pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.
Date: June 26, 2011
Creator: Doelle, Klaus
Partner: UNT Libraries Government Documents Department

New Manufacturing Method for Paper filler and Fiber Material

Description: The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.
Date: November 22, 2011
Creator: Doelle, Klaus
Partner: UNT Libraries Government Documents Department

Three-Dimensional Imaging of Nanoscale Materials by Uisng Coherent X-Rays

Description: X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We ...
Date: April 18, 2011
Creator: Miao, Jianwei
Partner: UNT Libraries Government Documents Department

Use of ARM Products in Reanalysis Applications and IPCC Model Assessment

Description: Year-3 of the project was spent developing an observed cloud climatology for Barrow, AK and relating the observed cloud fractions to the surface circulation patterns and locally observed winds. Armed with this information, we identified errors and sources of errors of cloud fraction simulations by numerical models in the Arctic. Specifically, we compared the cloud simulations output by the North American Regional Reanalysis (NARR) to corresponding observed cloud fractions obtained by the Department of Energy’s Atmospheric Radiation Measurement (ARM) program for four mid-season months: (January, April, July, and October). Reanalyses are obtained from numerical weather prediction models that are not run in real-time. Instead, a reanalysis model ingests a wide variety of historical observations for the purpose of producing a gridded dataset of many model-derived quantities that are as temporally homogeneous as possible. Therefore, reanalysis output can be used as a proxy for observations, although some biases and other errors are inevitable because of model parameterizations and observational gaps. In the observational analysis we documented the seasonality of cloudiness at the north slope including cloud base height and dependence on synoptic regime. We followed this with an evaluation of the associations of wind-speed and direction and cloud amounts in both the observational record and the reanalysis model. The Barrow cloud fraction data show that clear conditions are most often associated with anomalous high pressure to the north of Barrow, especially in spring and early summer. Overcast skies are most commonly associated with anomalous low pressure to the south. The observational analysis shows that low, boundary layer clouds are the most common type of cloud observed North Slope ARM observing site. However, these near-surface clouds are a major source of errors in the NARR simulations. When compared to observations, the NARR over-simulates the fraction of low clouds during the winter months, ...
Date: September 30, 2011
Creator: Walsh, John E. & Chapman, William L.
Partner: UNT Libraries Government Documents Department

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

Description: This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79.9% was achieved with a stressed algae sample containing 40% algae oil. The effort concluded that producing biodiesel directly from the algae biomass could be an efficient, ...
Date: April 29, 2011
Creator: Sun, Xiaolei & Rink, Nancy T
Partner: UNT Libraries Government Documents Department

ESG-CET Final Progress Title

Description: Drawing to a close after five years of funding from DOE's ASCR and BER program offices, the SciDAC-2 project called the Earth System Grid (ESG) Center for Enabling Technologies has successfully established a new capability for serving data from distributed centers. The system enables users to access, analyze, and visualize data using a globally federated collection of networks, computers and software. The ESG software - now known as the Earth System Grid Federation (ESGF) - has attracted a broad developer base and has been widely adopted so that it is now being utilized in serving the most comprehensive multi-model climate data sets in the world. The system is used to support international climate model intercomparison activities as well as high profile U.S. DOE, NOAA, NASA, and NSF projects. It currently provides more than 25,000 users access to more than half a petabyte of climate data (from models and from observations) and has enabled over a 1,000 scientific publications.
Date: October 6, 2011
Creator: Middleton, Don
Partner: UNT Libraries Government Documents Department

Final Technical Report: Results of Phase 1

Description: Arizona Public Service Company (APS) expects that by 2027, renewable energy will account for 6,590 GWh in energy consumption by its customers. While much of this future energy will come from large centrally-located power plants, distributed renewable energy, sited at the point of end-use will also play an important role in meeting the needs of APS customers and is expected to provide 1,734 GWh. With increasing penetration of residential and commercial photovoltaic (PV) systems at the point of end-use, PV power generation not only offsets the load, but could also cause significant shifts in power flow patterns through the distribution system, and could possibly cause reversal of flow through some branches of a distribution circuit. Significant changes to power flow introduced into existing distribution systems due to the increased amount of PV systems may cause operational issues, including over-voltage on the distribution feeder (loss of voltage regulation) and incorrect operation of control equipment, which may lead to an increase in the number of operations and related equipment wear that could affect equipment reliability and customer power quality. Additionally, connecting generation resources to a distribution feeder can introduce additional sources of short-circuit current to the distribution system. This could potentially result in increased short-circuit currents, potentially reaching damaging levels, causing protection desensitization and a potential loss of protection coordination. These effects may be further compounded by variability of PV production due to shading by clouds. The effects of these phenomena in distributed PV applications are not well understood, and there is a great need to characterize this variability. This project will contribute to understanding the effects of high-penetration solar electricity on the design and operation of distribution systems by demonstrating how a high penetration of PV systems affects grid operations of a working, utility distribution feeder. To address the technical challenges ...
Date: September 28, 2011
Creator: Narang, David, J.; Hambrick, Joshua; Srinivasan, Devarajan; Ayyannar, Raja; O'Brien, Kathleen; Bebic, Jovan et al.
Partner: UNT Libraries Government Documents Department

BLV-2011 Workshop, September 22-24, 2011

Description: The 3-rd International 3-days Workshop "Baryon and Lepton Number Violations: BLV-2011" took place at Gatlinburg, TN for September 22-24, 2011. Workshop was organized by the International Organizing Committee and had received advice from the International Program Advisory Committee (see Appendix 1). Workshop was co-chaired by Pavel Fileviez Perez (University of Wisconsin) for theory and Yuri Kamyshkov (University of Tennessee) for experiment and local organization. Workshop was supported and sponsored by the University of Tennessee, Indiana University, North Carolina State University together with TUNL, and by the HEP office of the Department of Energy. DOE financial support in this sponsoring grant was $8,000; that was 23% of the overall budget of the Workshop. Remaining 77% were provided by the sponsoring Universities. Workshop sponsors including DOE are shown on the Workshop webpage. There were 90 workshop participants with 52 from US and remaining from Bosnia/Herzegovina (1), Brazil (1), China (1), Columbia (1), France (1), Germany (10), Italy (9), Japan (4), Russian Federation (3), Slovenia (2), Spain (4), and Switzerland (1). Among Workshop participants there were 17 postdocs and young researchers and 11 graduate students. Total 67 talks and 14 posters were presented at Workshop during 3 days of sessions. Appendix 2 shows the list of talks and posters. Main topic of the Workshop was Baryon and Lepton number violation that has become a vital part of the current discussions of the physics beyond the Standard Model (SM), specifically in connection with understanding the nature of neutrinos, origin of matter in universe, as well as possible Grand Unification of matter and forces. The goal of the Workshop was to have a focused comprehensive discussion of the Baryon (B) and Lepton (L) number violating processes, and possible new physics combining violation of both, including (B−L) violation, as a probe of unification, baryo- and lepto-genesis, ...
Date: September 24, 2011
Creator: Committee, Y. A. Kamyshkov (University of Tennessee) co-Chair of the Workshop Organizing; Committee, P. Fileviez Perez (University of Wisconsin) co-Chair of the Workshop Organizing; W. M. Snow (Indiana University), member of Workshop Organizing Committee & A.R. Young (North Carolina State University), member of Workshop Organizing Committee
Partner: UNT Libraries Government Documents Department

Sensible Heat, Direct, Dual-Media Thermal Energy Storagy System: Phase 1 Final Technical Report

Description: Work under this project has ultimately focused on the development of a modular packed bed based thermal energy storage system. The design assumes the use of standard segments of carbon steel pipe filled with spherical materials creating a packed bed. These materials are assumed to be manufactured in such a way that the spherical shape is uniform throughout the packed bed. Out of 32 candidate materials evaluated, 8 materials remain. Each material meets the Phase I milestones that were specified for this storage system: a round trip efficiency in excess of 93%, and a required volume of packed bed material that does not exceed the volume of molten salt used in a two-tank storage system with equivalent thermal performance.
Date: November 4, 2011
Creator: Newmarker, Marc & Campbell, Mark
Partner: UNT Libraries Government Documents Department

Simulation of Distortion and Residual Stress Development During Heat Treatment of Steel Castings

Description: Heat treatment and associated processing, such as quenching, are critical during high strength steel casting production. These processes must be managed closely to prevent thermal and residual stresses that may result in distortion, cracking (particularly after machining), re-work, and weld repair. The risk of casting distortion limits aggressive quenching that can be beneficial to the process and yield an improved outcome. As a result of these distortions, adjustments must be made to the casting or pattern design, or tie bars must be added. Straightening castings after heat treatments can be both time-consuming and expensive. Residual stresses may reduce a casting’s overall service performance, possibly resulting in catastrophic failure. Stress relieving may help, but expends additional energy in the process. Casting software is very limited in predicting distortions during heat treatment, so corrective measures most often involve a tedious trial-and-error procedure. An extensive review of existing heat treatment residual stress and distortion modeling revealed that it is vital to predict the phase transformations and microstructure of the steel along with the thermal stress development during heat treatment. After reviewing the state-of-the-art in heat treatment residual stress and distortion modeling, an existing commercial code was selected because of its advanced capabilities in predicting phase transformations, the evolving microstructure and related properties along with thermal stress development during heat treatment. However, this software was developed for small parts created from forgings or machined stock, and not for steel castings. Therefore, its predictive capabilities for heat treatment of steel castings were investigated. Available experimental steel casting heat treatment data was determined to be of insufficient detail and breadth, and so new heat treatment experiments were designed and performed, casting and heat treating modified versions of the Navy-C ring (a classical test shape for heat treatment experiments) for several carbon and low alloy steels in ...
Date: July 22, 2011
Creator: Beckermann, Christoph & Carlson, Kent
Partner: UNT Libraries Government Documents Department

Policy Analysis of Produced Water Issues Associated With in-Situ Thermal Technologies

Description: Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil ...
Date: February 1, 2011
Creator: Keiter, Robert; Ruple, John & Tanana, Heather
Partner: UNT Libraries Government Documents Department

Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah

Description: An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.
Date: April 11, 2011
Creator: Birgenheier, Lauren P. & Michael D. Vanden Berg,
Partner: UNT Libraries Government Documents Department

First-Principles Modeling of Hydrogen Storage in Metal Hydride Systems

Description: The objective of this project is to complement experimental efforts of MHoCE partners by using state-of-the-art theory and modeling to study the structure, thermodynamics, and kinetics of hydrogen storage materials. Specific goals include prediction of the heats of formation and other thermodynamic properties of alloys from first principles methods, identification of new alloys that can be tested experimentally, calculation of surface and energetic properties of nanoparticles, and calculation of kinetics involved with hydrogenation and dehydrogenation processes. Discovery of new metal hydrides with enhanced properties compared with existing materials is a critical need for the Metal Hydride Center of Excellence. New materials discovery can be aided by the use of first principles (ab initio) computational modeling in two ways: (1) The properties, including mechanisms, of existing materials can be better elucidated through a combined modeling/experimental approach. (2) The thermodynamic properties of novel materials that have not been made can, in many cases, be quickly screened with ab initio methods. We have used state-of-the-art computational techniques to explore millions of possible reaction conditions consisting of different element spaces, compositions, and temperatures. We have identified potentially promising single- and multi-step reactions that can be explored experimentally.
Date: May 20, 2011
Creator: Johnson, J. Karl
Partner: UNT Libraries Government Documents Department

Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

Description: The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.
Date: April 1, 2011
Creator: SAIC
Partner: UNT Libraries Government Documents Department

Interfacial Area Transport and Regime Transition in Combinatorial Channels

Description: . This study investigates the geometric effects of 90-degree vertical elbows and flow configurations in two-phase flow. The study shows that the elbows make a significant effect on the transport characteristics of two-phase flow, which includes the changes in interfacial structures, bubble interaction mechanisms and flow regime transition. The effect of the elbows is characterized for global and local two-phase flow parameters. The global two-phase flow parameters include two-phase pressure, interfacial structures and flow regime transition. In order to characterize the frictional pressure drop and minor loss across the vertical elbows, pressure measurements are obtained across the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. A high speed camera is employed to perform extensive flow visualization studies across the elbows in vertical upward, horizontal and vertical downward sections and modified flow regime maps are proposed. It is found that modified flow regime maps immediately downstream of the vertical upward elbow deviate significantly from the conventional flow regime map. A qualitative assessment of the counter-current flow limitation characteristics specific to the current experimental facility is performed. A multi-sensor conductivity probe is used to measure local two-phase flow parameters such as: void fraction, bubble velocity, interfacial area concentration and bubble frequency. The local measurements are obtained for six different flow conditions at ten measurement locations along axial direction of the test section. Both the vertical-upward and vertical-downward elbows have a significant impact on bubble distribution, resulting in, a bimodal distribution along the horizontal radius of the tube cross-section and migration of bubbles towards the inside of the elbow curvatures immediately downstream of the vertical-upward and vertical-downward elbows, respectively. The elbow effect decays further downstream of ...
Date: January 28, 2011
Creator: Kim, Seugjin
Partner: UNT Libraries Government Documents Department

Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE

Description: The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensics has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.
Date: April 11, 2011
Creator: Jurisson, Silvia, S.
Partner: UNT Libraries Government Documents Department

2011 Remediation Effectiveness Report for the U.S. Department of Energy Oak Ridge Reservation, Oak Ridge, Tennessee - Data and Evaluations

Description: Under the requirements of the Oak Ridge Reservation (ORR) Federal Facility Agreement (FFA) established between the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency, (EPA) and the Tennessee Department of Environment and Conservation (TDEC) in 1992, all environmental restoration activities on the ORR are performed in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). Since the 1990s, the environmental restoration activities have experienced a gradual shift from characterization to remediation. As this has occurred, it has been determined that the assessment of the individual and cumulative performance of all ORR CERCLA remedial actions (RAs) is most effectively tracked in a single document. The Remediation Effectiveness Report (RER) is an FFA document intended to collate all ORR CERCLA decision requirements, compare pre- and post-remediation conditions at CERCLA sites, and present the results of any required post-decision remediation effectiveness monitoring. First issued in 1997, the RER has been reissued annually to update the performance histories of completed actions and to add descriptions of new CERCLA actions. Monitoring information used in the 2011 RER to assess remedy performance was collected and/or compiled by DOE's Water Resources Restoration Program (WRRP). Only data used to assess performance of completed actions are provided. In addition to collecting CERCLA performance assessment data, the WRRP also collects baseline data to be used to gauge the effectiveness of future actions once implemented. These baseline data are maintained in the Oak Ridge Environmental Information System and will be reported in future RERs, as necessary, once the respective actions are completed. However, when insufficient data exist to assess the impact of the RAs, e.g., when the RA was only recently completed, a preliminary evaluation is made of early indicators of effectiveness at the watershed scale, such as contaminant trends at surface water integration points ...
Date: March 1, 2011
Creator: Bechtel Jacobs
Partner: UNT Libraries Government Documents Department

Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

Description: Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) from unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as ...
Date: February 1, 2011
Creator: Bechtel Jacobs
Partner: UNT Libraries Government Documents Department