3 Matching Results

Search Results

Advanced search parameters have been applied.

Induced star formation and morphological evolution in very high redshift radio galaxies

Description: Near-infrared, sub-arcsecond seeing images obtained with the W M Keck I Telescope of show strong evolution at rest-frame optical wavelengths in the morphologies of high redshift radio galaxies (HzRGs) with 1 9 < z < 4 4 The structures change from large-scale low surface brightness regions surrounding bright, multiple component and often radio-aligned features at z > 3, to much more compact and symmetrical shapes at z < 3 The linear sizes ({approximately} 10 kpc) and luminosities (M{sub B} {approximately} -20 to -22) of the individual components in the z > 3 HzRGs are similar to the total sizes and luminosities of normal, radio-quiet, star forming galaxies seen at z = 3 - 4 `R`-band, 0 1`` resolution images with the Hubble Space Telescope of one of these HzRGs, 4C41 17 at z = 3 800, show that at rest-frame UV wavelengths the galaxy morphology breaks up in even smaller, {approximately} 1 kpc-sized components embedded in a large halo of low suface brightness emission The brightest UV emission is from a radio-aligned, edge-brightened feature (4C41 17.North) downstream from a bright radio knot A narrow-band Ly-{alpha} image, also obtained with HST, shows an arc-shaped Ly-{alpha} feature at this same location, suggestive of a strong jet/cloud collision Deep spectropolarimetric observations with the W M Keck II Telescope of 4C41 17 show that the radio-aligned UV continuum is unpolarized Instead the total light spectrum shows ahsorption lines and P-Cygni type features that are similar to the radio-quiet z = 3 - 4 star forming galaxies This shows that the rest-frame UV light in 4C41 17 is dominated by starlight, not scattered light from a hidden AGN The combined HST and Keck data suggest that the radio--aligned rest-frame UV continuum is probably caused by jet-induced star formation The strong morphological evolution suggests that we ...
Date: October 1, 1997
Creator: van Breugel, W. J. M.
Partner: UNT Libraries Government Documents Department

Very high redshift radio galaxies

Description: High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17
Date: December 1, 1997
Creator: van Breugel, W. J. M.
Partner: UNT Libraries Government Documents Department