4 Matching Results

Search Results

Advanced search parameters have been applied.

Status of U.S. programs for material protection, control & accounting assistance to Ukraine and Kazakstan

Description: The United States is one of several donor states providing technical assistance to the Newly Independent States (NIS) of the Former Soviet Union (FSU) for improving their systems for control of nuclear materials. Ukraine and Kazakstan have significant nuclear energy programs. Both countries have committed to nonproliferation of nuclear weapons. They have signed the NPT and have safeguards agreements with the U.S. concerning development of state systems of control, accounting and physical protection of nuclear materials. As directed by the DOE - International Safeguards Division (now the DOE - Russia/NIS Nuclear Materials Security Task Force), technical specialists from several national laboratories, including Argonne, Los Alamos, Oak Ridge, Pacific Northwest and Sandia, as well as representatives of other U.S. Government organizations, such as the NRC, DOD/DNA and the New Brunswick Laboratory, are interacting with government regulatory and facility personnel of Ukraine and Kazakstan. Argonne has program coordination responsibilities for both countries. In support of agreements between the U.S. and Ukraine and the U.S. and Kazakstan, the DOE is responsible for providing technical assistance and training to aid in the evaluation, design, development, and implementation of nuclear material safeguards. This assistance includes: (1) information systems for tracking and reporting the location of nuclear materials, (2) application of nuclear measurement techniques for verifying inventories, (3) material control and accounting (MC&A) systems, and (4) physical protection (PP) systems. Site survey teams, including both MC&A and PP experts from several national labs, have visited Ukraine and Kazakstan. This paper summarizes activities to date and future plans.
Date: December 1, 1995
Creator: Roche, C.T.; Zinneman, T.E. & Rudolph, R.R.
Partner: UNT Libraries Government Documents Department

Electromagnetic interactions between the U-25 superconducting magnet and the U-25 B MHD flow train

Description: Fluctuating voltage signals on the potential taps of the Argonne National Laboratory (ANL) 5.0 Tesla MHD Superconducting Dipole Magnet have been observed during MHD power generation at the U-25 B Facility at the High Temperature Institute (IVAN), Moscow, U.S.S.R. The voltage fluctuations are analyzed with special emphasis on magnet stability. Various other thermodynamic and electrical parameters of the U-25 B flow train have been recorded and statistical correlations between these signals and the signals observed at the magnet terminals are described.
Date: January 1, 1978
Creator: Smith, R.P.; Niemann, R.C.; Kraimer, M.R. & Zinneman, T.E.
Partner: UNT Libraries Government Documents Department

Physical protection system using activated barriers

Description: The Argonne National Laboratory has recently installed an activated barrier, the Access Denial System, to upgrade its security. The technology of this system was developed in the late 70's by Sandia National Laboratory-Albuquerque. The Argonne National Laboratory is the first Department of Energy facility to use this device. Recent advancements in electronic components provide the total system support that makes the use of an activated barrier viable and desirable. The premise of an activated barrier is that it is deployed after a positive detection of an adversary is made and before the adversary can penetrate vital area. To accomplish this detection, sophisticated alarms, assessment, and communications must be integrated into a system that permits a security inspector to make a positive evaluation and to activate the barrier. The alarm sensor locations are selected to provide protection in depth. Closed circuit television is used with components that permit multiple video frames to be stored for automated, priority-based playback to the security inspector. Further, algorithms permit look-ahead surveillance of vital areas so that the security inspector can activate the access denial system in a timely manner and not be restricted to following the adversaries' penetration path(s).
Date: March 1, 1984
Creator: Timm, R.E.; Zinneman, T.E.; Haumann, J.R.; Flaugher, H.A. & Reigle, D.L.
Partner: UNT Libraries Government Documents Department

Management of high current transients in the CWDD Injector 200 kV power system

Description: The injector for the Continuous Wave Deuterium Demonstrator is designed to deliver a high current CW negative deuterium ion beam at an energy of 200 keV to a Radio Frequency Quadrupole. The injector comprises a volume ion source, triode accelerator, high-power electron traps and low-energy beam transport with a single focusing solenoid. Some 75 Joules of energy are stored in stray capacitance around the high voltage system and discharged in a few microseconds following an injector breakdown. In order to limit damage to the accelerator grids, a magnetic snubber is incorporated to absorb most of the energy. Nevertheless, large current transients flow around the system as a result of an injector breakdown; these have frequently damaged power components and caused spurious behavior in many of the supporting systems. The analytical and practical approaches taken to minimize the effects of these transients are described. Injector breakdowns were simulated using an air spark gap and measurements made using standard EMC test techniques. The power circuit was modeled using an electrical simulation code; good agreement was reached between the model and measured results.
Date: June 1, 1993
Creator: Carwardine, J. A.; Pile, G. & Zinneman, T. E.
Partner: UNT Libraries Government Documents Department