8 Matching Results

Search Results

Advanced search parameters have been applied.

Nanocrystal Diffusion in a Liquid Thin Film Observed by in situ Transmission Electron Microscopy

Description: We have directly observed motion of inorganic nanoparticles during fluid evaporation using a Transmission Electron Microscope. Tracking real-time diffusion of both spherical (5-15 nm) and rod-shaped (5x10 nm) gold nanocrystals in a thin-film of water-15percentglycerol reveals complex movements, such as rolling motions coupled to large-step movements and macroscopic violations of the Stokes-Einstein relation for diffusion. As drying patches form during the final stages of evaporation, particle motion is dominated by the nearby retracting liquid front.
Date: April 17, 2009
Creator: Zheng, Haimei; Claridge, Shelley A.; Minor, Andrew M.; Alivisatos, A. Paul & Dahmen, Ulrich
Partner: UNT Libraries Government Documents Department

Independent control of the shape and composition of ionic nanocrystals through sequential cation exchange reactions

Description: Size- and shape-controlled nanocrystal growth is intensely researched for applications including electro-optic, catalytic, and medical devices. Chemical transformations such as cation exchange overcome the limitation of traditional colloidal synthesis, where the nanocrystal shape often reflects the inherent symmetry of the underlying lattice. Here we show that nanocrystals, with established synthetic protocols for high monodispersity, can be templates for independent composition control. Specifically, controlled interconversion between wurtzite CdS, chalcocite Cu2S, and rock salt PbS occurs while preserving the anisotropic dimensions unique to the as-synthesized materials. Sequential exchange reactions between the three sulfide compositions are driven by the disparate solubilites of the metal ion exchange pair in specific coordinating molecules. Starting with CdS, highly anisotropic PbS nanorods are created, which serve as an important material for studying strong 2-dimensional quantum confinement, as well as for optoelectronic applications. Furthermore, interesting nanoheterostructures of CdS|PbS are obtained by precise control over ion insertion and removal.
Date: July 6, 2009
Creator: Luther, Joseph Matthew; Zheng, Haimei; Sadtler, Bryce & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Hetero-Epitaxial Anion Exchange Yields Single-Crystalline Hollow Nanoparticles

Description: Anion exchange with S was performed on ZnO colloidal nanoparticles. The resulting hollow ZnS nanoparticles are crystal whose shape is dictated by the initial ZnO. Crystallographic and elemental analyses provide insight into the mechanism of the anion exchange.
Date: August 26, 2009
Creator: Park, Jungwon; Zheng, Haimei; Jun, Young-wook & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

Description: We report solar cells based on highly confined nanocrystals of the ternary compound PbSxSe1-x. Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction. Rutherford back scattering and energy filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles. Photovoltaic devices made using ternary nanoparticles are more efficient than either pure PbS or pure PbSe based nanocrystal devices.
Date: February 5, 2009
Creator: Ma, Wanli; Luther, Joseph; Zheng, Haimei; Wu, Yue & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Selective Facet Reactivity During Cation Exchange in Cadmium Sulfide Nanorods

Description: The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper I (Cu+) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu2S) grows inwards from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver I (Ag+) exchange in CdS nanorods where non-selective nucleation of silver sulfide (Ag2S) occurs. From interface formation energies calculated for several models of epitaxialconnections between CdS and Cu2S or Ag2S, we infer the relative stability of each interface during the nucleation and growth of Cu2S or Ag2S within the CdS nanorods. The epitaxial connections of Cu2S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. However, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.
Date: December 18, 2008
Creator: Sadtler, Bryce; Demchenko, Denis; Zheng, Haimei; Hughes, Steven; Merkle, Maxwell; Dahmen, Ulrich et al.
Partner: UNT Libraries Government Documents Department

Direct observation of two-step crystallization in nanoparticle superlattice formation

Description: Direct imaging of nanoparticle solutions by liquid phase transmission electron microscopy has enabled unique in-situ studies of nanoparticle motion and growth. In the present work, we report on real-time formation of two-dimensional nanoparticle arrays in the very low diffusive limit, where nanoparticles are mainly driven by capillary forces and solvent fluctuations. We find that superlattice formation appears to be segregated into multiple regimes. Initially, the solvent front drags the nanoparticles, condensing them into an amorphous agglomerate. Subsequently, the nanoparticle crystallization into an array is driven by local fluctuations. Following the crystallization event, superlattice growth can also occur via the addition of individual nanoparticles drawn from outlying regions by different solvent fronts. The dragging mechanism is consistent with simulations based on a coarse-grained lattice gas model at the same limit.
Date: October 6, 2011
Creator: Park, Jungwon; Zheng, Haimei; Lee, Won Chul; Geissler, Phillip L.; Rabani, Eran & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Sulfidation of Cadmium at the Nanoscale

Description: We investigate the evolution of structures that result when spherical Cd nanoparticles of a few hundred nanometers in diameter react with dissolved molecular sulfur species in solution to form hollow CdS. Over a wide range of temperatures and concentrations, we find that rapid Cd diffusion through the growing CdS shell localizes the reaction front at the outermost CdS/S interface, leading to hollow particles when all the Cd is consumed. When we examine partially reacted particles, we find that this system differs significantly from others in which the nanoscale Kirkendall effect has been used to create hollow particles. In previously reported systems, partial reaction creates a hollow particle with a spherically symmetric metal core connected to the outer shell by filaments. In contrast, here we obtain a lower symmetry structure, in which the unreacted metal core and the coalesced vacancies separate into two distinct spherical caps, minimizing the metal/void interface. This pattern of void coalescence is likely to occur in situations where the metal/vacancy self-diffusivities in the core are greater than the diffusivity of the cations through the shell.
Date: May 22, 2008
Creator: Cabot, Andreu; Smith, Rachel; Yin, Yadong; Zheng, Haimei; Reinhard, Bjorn; Liu, Haitao et al.
Partner: UNT Libraries Government Documents Department

Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

Description: Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.
Date: December 7, 2009
Creator: Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A. et al.
Partner: UNT Libraries Government Documents Department