Search Results

Advanced search parameters have been applied.
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Previously we described a particle-in-binder approach to immobilizing the potassium salt of the molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the tips of optical fibers. Compared to previous methods, the particle-in-binder approach affords fi… more
Date: May 1, 2006
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Our approach towards immobilizing the potassium salt of the molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the far end of an optical fiber is to embed the cluster in a thermally cured sol-gel matrix particle. Due to the improved mechanical pro… more
Date: September 30, 2006
Creator: Baker, Gregory L.; Ghosh, Ruby N.; Osborn, D. J. & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications has been developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. We report on a fiber optic technique for detection of gas phase oxygen up to 100 C based on the {sup 3}O{sub 2} quenching of the luminescence from molybdenum chloride clusters, K{sub 2}Mo{sub 6}Cl{sub 14}. The inorganic sensing film is a composite … more
Date: September 30, 2006
Creator: Baker, Gregory L.; Ghosh, Ruby N.; Osborn, D. J. & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Our approach towards immobilizing the potassium salt of the molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the far end of an optical fiber is to embed the cluster in a thermally cured sol-gel matrix particle. This particle-in-binder approach a… more
Date: June 30, 2006
Creator: Baker, Gregory L.; Ghosh, Ruby N.; Osborn, D.J. & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

Description: A reflection mode fiber optic oxygen sensor is being developed that can operate at high temperatures for power plant applications. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Two critical materials issues are the cluster's ability to withstand high temperatures when immobilized in a porous the sol-gel support, and whether after heating to high temperatures, the sol-gel matrix maintains a high and constant permeability t… more
Date: July 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. One of the critical materials issues is to demonstrate that the luminescent cluster immobilized in the sol-gel porous support can withstand high temperature. At the same time the sol-gel matrix must have a high permeability to oxygen. Using a potas… more
Date: April 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Previously we immobilized the potassium salt of a molybdenum cluster, K{sub 2}M{sub 6}Cl{sub 14}, in a sol-gel matrix and showed that the luminescence is stable after 54 hours at 200 C, but the quenching ratios were low and the films delaminated af… more
Date: October 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. One of the critical materials issues is to demonstrate that the luminescent cluster immobilized in the sol-gel porous support can withstand high temperature. At the same time the sol-gel matrix must have a high permeability to oxygen. Using a potas… more
Date: January 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
open access

Fiber Optical Micro-detectors for Oxygen Sensing in Power Plants

Description: A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Previously we described a particle-in-binder approach to immobilizing the potassium salt of a molybdenum cluster, K{sub 2}Mo{sub 6}Cl{sub 14}, at the tips of optical fibers. Compared to previous methods, the particle-in-binder approach affords fibe… more
Date: January 1, 2006
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
Partner: UNT Libraries Government Documents Department
Back to Top of Screen