4 Matching Results

Search Results

Advanced search parameters have been applied.

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

Description: In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.
Date: July 1, 1995
Creator: Zanner, F.J. & Moffatt, W.C.
Partner: UNT Libraries Government Documents Department

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

Description: In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.
Date: July 1, 1995
Creator: Zanner, F.J. & Moffatt, W.C.
Partner: UNT Libraries Government Documents Department

Two- and three-dimensional flow simulations of ingot growth in an EBeam furnace

Description: Electron-Beam (EBeam) melting furnaces are routine used to minimize the occurrence of second-phase particles in the processing of segregation-sensitive alloys. As one part of the process, a circulating electron beam impinges the surface of a crucible melt pool to help control the shape of the solidification front below. By modeling melt pool hydrodynamics, heat transfer, and the shape of solidification boundaries, we plan to optimize the dwell pattern of the beam so that the material solidifies with a composition as spatially homogeneous as possible. Both two- and three-dimensional models are being pursued with FIDAP 5.02, the former serving as a test bed for various degrees of model sophistication. A heat flux distribution is specified on the top of the domain to simulate the EBeam dwell pattern. In two dimensions it is found that an inertially-driven recirculation in the melt pool interacts with a counter-rotating buoyancy-driven recirculation, and that both recirculations are influenced heavily by surface tension gradients on the melt-pool surface. In three dimensions the inertial cell decays quickly with distance from the position of the inlet stream, causing the fluid to precess the crucible. Ingot macrosegregation patterns for a U-6 wt. % Nb alloy are calculated with the Flemings-Mehrabian equation of solute redistribution; the sensitivity of these patterns to EBeam dwell pattern is explored.
Date: January 1, 1991
Creator: Schunk, P.R.; Fisher, R.W. & Zanner, F.J.
Partner: UNT Libraries Government Documents Department

Anisotropic porous metals production by melt processing

Description: The collapse of the Soviet Union has left many of its scientific institutes and technical universities without their traditional backbone of financial support. In an effort to stem the export of science to nations advocating nuclear proliferation, and to acquire potentially useful technology, several US government-sponsored programs have arise to mine the best of former USSR scientific advances. In the field of metallurgy, the earliest institutes to be investigated by Sandia National Laboratories are located in Ukraine. In particular, scientists at the State Metallurgical Academy have developed unique porous metals, resembling what could be described as gas-solid ``eutectic``. While porous metals are available in the US and other western countries, none have the remarkable structure and properties of these materials. Sandia began a collaborative program with the Ukrainian scientists to bring this technology to the US, verify the claims regarding these materials, and begin production of the so-called Gasars. This paper will describe the casting process technology and metallurgy associated with the production of Gasars, and will review the progress of the collaborative project.
Date: February 1, 1997
Creator: Shapovalov, V.; Boiko, L.; Baldwin, M.D.; Maguire, M.C. & Zanner, F.J.
Partner: UNT Libraries Government Documents Department