6 Matching Results

Search Results

Advanced search parameters have been applied.

Second generation advanced reburning for high efficiency NO{sub x} control. Progress report No. 2, January 1--March 31, 1996

Description: Existing NO{sub x} control technologies have limitations which may prevent them from successfully achieving commercial, cost effective application in the near future. This project develops a family of novel NO{sub x} control technologies, Second Generation Advanced Reburning (SGAR), which have a potential to achieve 90+% NO{sub x} control at a significantly lower cost than Selective Catalytic Reduction (SCR). Phase I consists of six tasks: Task 1.1, project coordination and reporting deliverables; Task 1.2, kinetics of Na{sub 2}CO{sub 3} reactions with flue gas components; Task 1.3, 0.1 {times} 10{sup 6} Btu/hr optimization studies; Task 1.4, 1.0 {times} 10{sup 6} Btu/hr process development tests; Task 1.5, mechanism development and modeling; and Task 1.6, design methodology and application. This second reporting period included both modeling and experimental activities. Modeling was focused on evaluation of ammonia injection into the reburning zone and on the effect of various additives on promotion of the NO-NH{sub 3} interaction in the reburning zone. First bench scale Controlled Temperature Tower (CTT) experiments have been performed on different variants of the Advanced Returning technology. The tests are continued, and the results will be reduced and reported in the next quarter.
Date: April 25, 1996
Creator: Zamansky, V.M.
Partner: UNT Libraries Government Documents Department

Second generation advanced reburning for high efficiency NO{sub x} control. Progress report No. 3, April 1--June 30, 1996

Description: This project develops a family of novel NO{sub x} control technologies, Second Generation Advanced Reburning (SGAR), which has the potential to achieve 90+% NO{sub x} control at a significantly lower cost than selective catalytic reduction. Phase I consists of six tasks: Task 1.1, project coordination and reporting deliverables; Task 1.2, kinetics of Na{sub 2}CO{sub 3} reactions with flue gas components; Task 1.3, 20 kW optimization studies; Task 1.4, 20 kW process development tests; Task 1.5, mechanism development and modeling; and Task 1.6, design methodology and application. This third reporting period included both experimental and modeling activities. Tests continued at the Controlled Temperature Tower (CTT), and the results have been reduced and are reported. A study on high- temperature reactions of sodium promoters (Task 1.2) is underway at the University of Texas in Austin (UT). A brief literature review on high-temperature sodium reactions is included in this report. A high- temperature flow system with GC analysis was prepared at the University of Texas at Austin for the experimental program. Modeling focused on description of NO-NH{sub 3} interaction in the burnout zone.
Date: July 26, 1996
Creator: Zamansky, V.M. & Maly, P.M.
Partner: UNT Libraries Government Documents Department

Second generation advanced reburning for high efficiency NO{sub x} control. Quaterly progress report No. 1, October 1--December 31, 1995

Description: Title 1 of the Clean Air Act Amendment (CAAA) of 1990 requires NO{sub x} controls in ozone non- attainment areas. The initial Title 1 regulations, implemented over the last few years, required Reasonably Available Control Technologies (RACT). In most areas, the NO{sub x} levels for RACT are based on Low NO{sub x} Burners (LNB) and are in the range of 0.4 to 0.5 lb/10{sup 6} Btu. As a result, there has been little industry demand for higher efficiency and more expensive NO{sub x} controls such as reburning, Selective Non-Catalytic Reduction (SNCR), and Selective Catalytic Reduction (SCR). However, the current RACT requirements will not be the end of NO{sub x} regulations. Much more stringent NO{sub x} control will be required to bring many of the ozone non-attainment areas into compliance, particularly in the Northeast. This paper describes second generation advanced reburning for nitrogen oxides control.
Date: January 22, 1996
Creator: Zamansky, V.M. & Maly, P.M.
Partner: UNT Libraries Government Documents Department

Second generation advanced reburning for high efficiency NO(x) control. Progress report, 1196

Description: This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning (SGAR), which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than Selective Catalytic Reduction. Phase I consists of six tasks: Task 1.1 Project Coordination and Reporting/Deliverables; Task 1.2 Kinetics of Na{sub 2}CO{sub 3} Reactions with Flue Gas Components; Task 1.3 O.l x lO{sup 6}Btu/hr Optimization Studies; Task 1.4 1.0 x 10{sup 6} Btu/hr Process Development Tests; Task 1.5 Mechanism Development and Modeling; and Task 1. 6 Design Methodology and Application. The fourth reporting period (July 1 - September 30, 1996) included both experimental and modeling activities. The bench scale CTT experiments (Task 1.3) were completed. The 1 MMBtu/hr Boiler Simulator Facility (BSF) was prepared for the test program and experiments were conducted using natural gas (NG) as main and reburing fuels (Task 1.4). A few preliminary tests were also performed with coal firing. The results have been reduced and are reported. Initial experimental data were obtained on reactions of sodium promoters (Task 1.2) at the University of Texas in Austin (UT). The kinetic model was extended to include reactions of sulfur and sodium (Task 1.5).
Date: October 1, 1996
Creator: Zamansky, V.M. & Maly, P.M.
Partner: UNT Libraries Government Documents Department

Second Generation Advanced Reburning for High Efficiency NO(x) Control.

Description: This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The eighth reporting period (July 1 - September 30, 1997) included experimental and final report preparation activities. Experiments on high-temperature reactions of sodium carbonate were completed at the University of Texas in Austin. This study revealed that sodium can affect NO{sub x} concentrations under both fuel-rich and fuel-lean conditions. The engineering design conducted during the previous reporting period was converted into retrofit hardware for the AR-Lean system and initial test results are presented and discussed. All information presented in this report is in summary form since a Draft Final project report was submitted to DOE FETC by July 31, 1997.
Date: October 27, 1997
Creator: Zamansky, V.M. & Folsom, B.A.
Partner: UNT Libraries Government Documents Department

Second Generation Advanced Reburning for High Eficiency NO(x) Control

Description: This project is designed to develop a family of novel NO{sub x} control technologies, called Second Generation Advanced Reburning which has the potential to achieve 90+% NO{sub x} control in coal fired boilers at a significantly lower cost than SCR. The sixth reporting period (January I - March 31, 1997) included both experimental and modeling activities. New kinetic experimental data for high-temperature decomposition of sodium carbonate were obtained in a flow reactor at the University of Texas in Austin. Pilot scale combustion tests in a 1.0 MMBtu/hr Boiler Simulator Facility were continued with firing coal and using natural gas as reburn fuel. The results demonstrate that over 90% NO control is achievable by injecting one or two N-agents with sodium promoters into the reburning zone and with the overfire air. Advanced reburning technologies does not cause significant byproduct emissions. The AR kinetic model was updated to include chemical reactions of sodium carbonate decomposition. Modeling was conducted on evaluation of the effect of sodium on process kinetics in the rebuming zone. This study revealed that increasing or decreasing radical concentrations in the presence of sodium can significantly affect the reactions responsible for NO reduction under fuel-rich conditions. The effect of mixing time on performance with sodium was also evaluated. Initial activities on engineering design methodology for second generation AR improvements are described.
Date: April 30, 1997
Creator: Zamansky, V.M.; Maly, P.M.; Sheldon, M.S.; Moyeda, D.; Gardiner, W.C., Jr. & Lissianski, V.V.
Partner: UNT Libraries Government Documents Department