7 Matching Results

Search Results

Advanced search parameters have been applied.

Theory of Nanocluster Size Distributions from Ion Beam Synthesis

Description: Ion beam synthesis of nanoclusters is studied via both kinetic Monte Carlo simulations and the self-consistent mean-field solution to a set of coupled rate equations. Both approaches predict the existence of a steady state shape for the cluster size distribution that depends only on a characteristic length determined by the ratio of the effective diffusion coefficient to the ion flux. The average cluster size in the steady state regime is determined by the implanted species/matrix interface energy.
Date: June 13, 2008
Creator: Yuan, C.W.; Yi, D.O.; Sharp, I.D.; Shin, S.J.; Liao, C.Y.; Guzman, J. et al.
Partner: UNT Libraries Government Documents Department

Structure Map for Embedded Binary Alloy Nanocrystals

Description: The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.
Date: September 20, 2008
Creator: Yuan, C. W.; Shin, S. J.; Liao, C. Y.; Guzman, J.; Stone, P. R.; Watanabe, M. et al.
Partner: UNT Libraries Government Documents Department

Photo-oxidation of Ge Nanocrystals: Kinetic Measurements by InSitu Raman Spectroscopy

Description: Ge nanocrystals are formed in silica by ion beam synthesis and are subsequently exposed by selective HF etching of the silica. Under ambient conditions, the exposed nanocrystals are stable after formation of a protective native oxide shell of no more than a few monolayers. However, under visible laser illumination at room temperature and in the presence of O{sub 2}, the nanocrystals rapidly oxidize. The oxidation rate was monitored by measuring the Raman spectra of the Ge nanocrystals in-situ. The intensity ratio of the anti-Stokes to the Stokes line indicated that no significant laser-induced heating of illuminated nanocrystals occurs. Therefore, the oxidation reaction rate enhancement is due to a photo-chemical process. The oxidation rate varies nearly linearly with the logarithm of the laser intensity, and at constant laser intensity the rate increases with increasing photon energy. These kinetic measurements, along with the power dependencies, are described quantitatively by an electron active oxidation mechanism involving tunneling of optically excited electrons through the forming oxide skin and subsequent transport of oxygen ions to the Ge nanocrystal surface.
Date: November 22, 2006
Creator: Sharp, I.D.; Xu, Q.; Yuan, C.W.; Beeman, J.W.; Ager III, J.W.; Chrzan, D.C. et al.
Partner: UNT Libraries Government Documents Department

Kinetics of visible light photo-oxidation of Ge nanocrystals:Theory and in situ measurement

Description: Photo-oxidation of Ge nanocrystals illuminated with visible laser light under ambient conditions was investigated. The photo-oxidation kinetics were monitored by in situ measurement of the crystalline Ge volume fraction by Raman spectroscopy. The effects of laser power and energy on the extent of oxidation were measured using both in situ and ex situ Raman scattering techniques. A mechanistic model in which the tunneling of photo-excited carriers to the oxide surface for electron activated molecular oxygen dissociation is proposed. This quantitative model successfully describes all experimental photo-oxidation observations using physical parameters.
Date: November 14, 2006
Creator: Sharp, I.D.; Xu, Q.; Yuan, C.W.; Beeman, J.W.; Ager III, J.W.; Chrzan, D.C. et al.
Partner: UNT Libraries Government Documents Department

Superheating and supercooling of Ge nanocrystals embedded inSiO2

Description: Free-standing nanocrystals exhibit a size-dependant thermodynamic melting point reduction relative to the bulk melting point that is governed by the surface free energy. The presence of an encapsulating matrix, however, alters the interface free energy of nanocrystals and their thermodynamic melting point can either increase or decrease relative to bulk. Furthermore, kinetic contributions can significantly alter the melting behaviors of embedded nanoscale materials. To study the effect of an encapsulating matrix on the melting behavior of nanocrystals, we performed in situ electron diffraction measurements on Ge nanocrystals embedded in a silicon dioxide matrix. Ge nanocrystals were formed by multi-energy ion implantation into a 500 nm thick silica thin film on a silicon substrate followed by thermal annealing at 900 C for 1 h. We present results demonstrating that Ge nanocrystals embedded in SiO{sub 2} exhibit a 470 K melting/solidification hysteresis that is approximately symmetric about the bulk melting point. This unique behavior, which is thought to be impossible for bulk materials, is well described using a classical thermodynamic model that predicts both kinetic supercooling and kinetic superheating. The presence of the silica matrix suppresses surface pre-melting of nanocrystals. Therefore, heterogeneous nucleation of both the liquid phase and the solid phase are required during the heating and cooling cycle. The magnitude of melting hysteresis is governed primarily by the value of the liquid Ge/solid Ge interface free energy, whereas the relative values of the solid Ge/matrix and liquid Ge/matrix interface free energies govern the position of the hysteresis loop in absolute temperature.
Date: August 21, 2006
Creator: Xu, Q.; Sharp, I.D.; Yuan, C.W.; Yi, D.O.; Liao, C.Y.; Glaeser,A.M. et al.
Partner: UNT Libraries Government Documents Department

Large melting point hysteresis of Ge nanocrystals embedded inSiO2

Description: The melting behavior of Ge nanocrystals embedded within SiO{sub 2} is evaluated using in situ transmission electron microscopy. The observed melting point hysteresis is large ({+-} 17%) and nearly symmetric about the bulk melting point. This hysteresis is modeled successfully using classical nucleation theory without the need to invoke epitaxy.
Date: May 4, 2006
Creator: Xu, Q.; Sharp, I.D.; Yuan, C.W.; Yi, D.O.; Liao, C.Y.; Glaeser,A.M. et al.
Partner: UNT Libraries Government Documents Department