10 Matching Results

Search Results

Advanced search parameters have been applied.

Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an AL-Zn-Mg-(Cu) Alloy

Description: Precipitation hardenable Al-Zn-Mg alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are used to increase HEAC resistance at the expense of strength but overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). Results show that overaging the copper bearing alloys both inhibits hydrogen ingress from oxide covered surfaces and decreases the apparent hydrogen diffusion rates in the metal.
Date: April 9, 2002
Creator: Young, G.A. & Scully, J.R.
Partner: UNT Libraries Government Documents Department

Factors Affecting the Hydrogen Environment Assisted Cracking Resistance of an Al-Zn-Mg-(Cu) Alloy

Description: It is well established that Al-Zn-Mg-(Cu) aluminum alloys are susceptible to hydrogen environment assisted cracking (HEAC) when exposed to aqueous environments. In Al-Zn-Mg-Cu alloys, overaged tempers are commonly used to increase HEAC resistance at the expense of strength. Overaging has little benefit in low copper alloys. However, the mechanism or mechanisms by which overaging imparts HEAC resistance is poorly understood. The present research investigated hydrogen uptake, diffusion, and crack growth rate in 90% relative humidity (RH) air for both a commercial copper bearing Al-Zn-Mg-Cu alloy (AA 7050) and a low copper variant of this alloy in order to better understand the factors which affect HEAC resistance. Experimental methods used to evaluate hydrogen concentrations local to a surface and near a crack tip include nuclear reaction analysis (NRA), focused ion beam, secondary ion mass spectroscopy (FIB/SIMS) and thermal desorption spectroscopy (TDS). When freshly bared coupons of AA 7050 are exposed to 90 C, 90% RH air, hydrogen ingress follows inverse-logarithmic-type kinetics and is equivalent for underaged (HEAC susceptible) and overaged (HEAC resistant) tempers. However, when the native oxide is allowed to form (24 hrs in 25 C, 40% RH lab air) prior to exposure to 90 C, 90% RH air, underaged alloy shows significantly greater hydrogen ingress than the overaged alloy. Humid air is a very aggressive environment producing local ({approx}1{micro}m) hydrogen concentrations in excess of 10,000 wt. ppm at 90 C. In the copper bearing alloy, overaging also effects the apparent diffusivity of hydrogen. As AA 7050 is aged from underaged {yields} peak aged {yields} overaged, the activation energy for hydrogen diffusion increases and the apparent diffusivity for hydrogen decreases, In the low copper alloy, overaging has little effect on hydrogen diffusion. Comparison of the apparent activation energies for hydrogen diffusion and for K independent (stage II) crack growth rate ...
Date: September 12, 2001
Creator: Young, G.A. & Scully, J.R.
Partner: UNT Libraries Government Documents Department

Primary Water SCC Understanding and Characterization Through Fundamental Testing in the Vicinity of the Nickel/Nickel Oxide Phase Transition

Description: This paper quantifies the nickel alloy stress corrosion crack growth rate (SCCGR) dissolved hydrogen level functionality. SCCGR has been observed to exhibit a maximum in proximity to the nickel/nickel oxide phase transition. The dissolved hydrogen level SCCGR dependency has been quantified in a phenomenological model in terms of the stability of nickel oxide not the dissolved hydrogen level. The observed SCCGR dependency has been extended to lower temperatures through the developed model and Contact Electrical Resistance (CER) measurements of the nickel/nickel oxide phase transition. Understanding obtained from this hydrogen level SCC functionality and complementary SCC subprocesses test results is discussed. Specifically, the possible SCC fundamental subprocesses of corrosion kinetics, hydrogen permeation and pickup have also been measured for nickel alloys. Secondary Ion Mass Spectroscopy (SIMS) analysis has been performed on SCCGR specimens tested in heavy water (D{sub 2}O).
Date: May 8, 2001
Creator: Morton, D.S.; Attanasio, S.A. & Young, G.A.
Partner: UNT Libraries Government Documents Department

Stress Corrosion Crack Growth Rate Testing and Analytical Electron Microscopy of Alloy 600 as a Function of Pourbaix Space and Microstructure

Description: Stress corrosion crack (SCC) growth rate tests and analytical electron microscopy (AEM) studies were performed over a broad range of environments and heat treatments of Alloy 600. This effort was conducted to correlate bulk environmental conditions such as pH and electrochemical potential (EcP) with the morphology of the SCC crack. Development of a library of AEM morphologies formed by SCC in different environments is an important step in identifying the conditions that lead to SCC in components. Additionally, AEM examination of stress corrosion cracks formed in different environments and microstructures lends insight into the mechanism(s) of stress corrosion cracking. Testing was conducted on compact tension specimens in three environments: a mildly acidic oxidizing environment containing sulfate ions, a caustic environment containing 10% NaOH, and hydrogenated near-neutral buffered water. Additionally, stress corrosion cracking testing of a smooth specimen was conducted in hydrogenated steam. The following heat treatments of Alloy 600 were examined: mill annealed at 980 C (near-neutral water), mill annealed at 1010 C (steam), sensitized (acid and caustic), and mill annealed + healed to homogenize the grain boundary Cr concentration (caustic). Crack growth rate (CGR) testing showed that sensitized Alloy 600 tested in the mildly acidic, oxidizing environment containing sulfate ions produced the fastest cracking ({approx} 8.8 {micro}m/hr at 260 C), and AEM examination revealed evidence of sulfur segregation to the crack tip. The caustic environment produced slower cracking ({approx} 0.4 {micro}m/hr at 307 C) in the mill annealed + healed heat treatment but no observed cracking in the sensitized condition. In the caustic environment, fully oxidized carbides were present in the crack wake but not ahead of the crack tip. In near-neutral buffered water at 338 C, the CGR was a function of dissolved hydrogen in the water and exhibited a maximum (0.17 {micro}m/hr) near the transition between Ni ...
Date: October 4, 2000
Creator: Lewis, N.; Attanasio, S.A.; Morton, D.S. & Young, G.A.
Partner: UNT Libraries Government Documents Department

The Influence of Dissolved hydrogen on Nickel Alloy SCC: A Window to Fundamental Insight

Description: Prior stress corrosion crack growth rate (SCCGR) testing of nickel alloys as a function of the aqueous hydrogen concentration (i.e., the concentration of hydrogen dissolved in the water) has identified different functionalities at 338 and 360 C. These SCCGR dependencies have been uniquely explained in terms of the stability of nickel oxide. The present work evaluates whether the influence of aqueous hydrogen concentration on SCCGR is fundamentally due to effects on hydrogen absorption and/or corrosion kinetics. Hydrogen permeation tests were conducted to measure hydrogen pickup in and transport through the metal. Repassivation tests were performed in an attempt to quantify the corrosion kinetics. The aqueous hydrogen concentration dependency of these fundamental parameters (hydrogen permeation, repassivation) has been used to qualitatively evaluate the film-rupture/oxidation (FRO) and hydrogen assisted cracking (HAC) SCC mechanisms. This paper discusses the conditions that must be imposed upon these mechanisms to describe the known nickel alloy SCCGR aqueous hydrogen concentration functionality. Specifically, the buildup of hydrogen within Alloy 600 (measured through permeability) does not exhibit the same functionality as SCC with respect to the aqueous hydrogen concentration. This result implies that if HAC is the dominant SCC mechanism, then corrosion at isolated active path regions (i.e., surface initiation sites or cracks) must be the source of localized elevated detrimental hydrogen. Repassivation tests showed little temperature sensitivity over the range of 204 to 360 C. This result implies that for either the FRO or the HAC mechanism, corrosion processes (e.g., at a crack tip, in the crack wake, or on surfaces external to the crack) cannot by themselves explain the strong temperature dependence of nickel alloy SCC.
Date: October 12, 2000
Creator: Morton, D.S.; Attanasio, S.A.; Young, G.A.; Andresen, P.L. & Angeliu, T.M.
Partner: UNT Libraries Government Documents Department

Microstructural and Microchemical Characterization of Dual Step Aged Alloy X-750 and its Relationship to Environmentally Assisted Cracking

Description: When exposed to deaerated high purity water, Alloy X-750 is susceptible to both high temperature (> 249 C) intergranular stress corrosion cracking (IGSCC) and intergranular low temperature (< 149 C) fracture (LTF). However, the microstructural and microchemical factors that govern environmentally assisted cracking (EAC) susceptibility are poorly understood. The present study seeks to characterize the grain boundary microstructure and microchemistry in order to gain a better mechanistic understanding of stress corrosion crack initiation, crack growth rate, and low temperature fracture. Light microscopy, scanning electron microscopy, transmission electron microscopy, orientation imaging microscopy, scanning Auger microscopy, and thermal desorption spectroscopy were performed on selected heats of Alloy X-750 AH. These data were correlated to EAC tests performed in 338 C deaerated water. Results show that grain boundary MC-type [(Ti,Nb)C] carbides and increased levels of grain boundary phosphorus correlate with an increase in LTF susceptibility but have little effect on the number of initiation sites or the SCC crack growth rate. Thermal desorption data show that multiple hydrogen trapping states exist in Alloy X-750 condition AH. Moreover, it appears that exposure to high temperature (> 249 C), hydrogen deaerated water increases the hydrogen concentration in strong hydrogen trap states and degrades the resistance of the material to low temperature fracture. These findings are consistent with a hydrogen embrittlement based mechanism of LTF where intergranular fracture occurs ahead of a crack tip and is exacerbated by phosphorus segregation to grain boundaries and grain boundary hydrogen trap states.
Date: May 8, 2001
Creator: Young, G.A.; Lewis, N.; Hanson, M.; Matuszyk, W.; Wiersma, B. & Gonzalez, S.
Partner: UNT Libraries Government Documents Department

Factors Affecting the Hydrogen Embrittlement Resistance of Ni-Cr-Mn-Nb Welds

Description: Nickel based alloys are often welded with argon/hydrogen shielding gas mixtures to minimize oxidation and improve weld quality. However, shielding gas mixtures with {ge} 1% hydrogen additions can result in hydrogen concentrations greater than 5 wt. ppm in the weld metal and reduce ductility via hydrogen embrittlement. For the conditions investigated, the degree of hydrogen embrittlement is highly variable between 5 and 14 wt. ppm. investigation of hydrogen embrittlement of EN82H GTAW welds via tensile testing, light microscopy, transmission electron microscopy, orientation imaging microscopy, and thermal desorption spectroscopy shows that this variability is due to the inhomogeneous microstructure of the welds, the presence of recrystallized grains, and complex residual plastic strains. Specifically, research indicates that high residual strains and hydrogen trapping lower the ductility of Ni-Cr-Mn-Nb weld metal when dissolved hydrogen concentrations are greater than 5 wt. ppm. The inhomogeneous microstructure contains columnar dendritic, cellular dendritic, and recrystallized grains. The decreased tensile ductility observed in embrittled samples is recovered by post weld heat treatments that decrease the bulk hydrogen concentration below 5 wt. ppm.
Date: March 18, 2001
Creator: Young, G.A.; Battige, C.K.; Liwis, N.; Penik, M.A.; Kikel, J.; Silvia, A.J. et al.
Partner: UNT Libraries Government Documents Department