2 Matching Results

Search Results

Advanced search parameters have been applied.

A modified invasion percolation model for low-capillary number immiscible displacements in horizontal rough-walled fractures: Influence of local in-plane

Description: The authors develop and evaluate a modified invasion percolation (MIP) model for quasi-static immiscible displacement in horizontal fractures. The effects of contact angle, local aperture field geometry, and local in-plane interracial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field. This pressure controls the choice of which site is invaded during the displacement process and hence the growth of phase saturation structure within the fracture. To focus on the influence of local in-plane curvature on phase invasion structure, they formulate a simplified nondimensional pressure equation containing a dimensionless curvature number (C) that weighs the relative importance of in-plane curvature and aperture-induced curvature. Through systematic variation of C, they find in-plane interracial curvature to greatly affect the phase invasion structure. As C is increased from zero, phase invasion fronts transition from highly complicated (IP results) to microscopically smooth. In addition, measurements of fracture phase saturations and entrapped cluster statistics (number, maximum size, structural complication) show differential response between wetting and nonwetting invasion with respect to C that is independent of contact angle hysteresis. Comparison to experimental data available at this time substantiates predicted behavior.
Date: January 28, 2000
Creator: GLASS JR.,ROBERT J.; NICHOLL,MICHAEL J. & YARRINGTON,LANE
Partner: UNT Libraries Government Documents Department

Gravity destabilized non-wetting phase invasion in macro-heterogeneous porous media: Near pore scale macro modified invasion percolation simulation of experiments

Description: The authors reconceptualize macro modified invasion percolation (MMIP) at the near pore (NP) scale and apply it to simulate the non-wetting phase invasion experiments of Glass et al [in review] conducted in macro-heterogeneous porous media. For experiments where viscous forces were non-negligible, they redefine the total pore filling pressure to include viscous losses within the invading phase as well as the viscous influence to decrease randomness imposed by capillary forces at the front. NP-MMIP exhibits the complex invasion order seen experimentally with characteristic alternations between periods of gravity stabilized and destabilized invasion growth controlled by capillary barriers. The breaching of these barriers and subsequent pore scale fingering of the non-wetting phase is represented extremely well as is the saturation field evolution, and total volume invaded.
Date: March 8, 2000
Creator: GLASS JR.,ROBERT J.; CONRAD,STEPHEN H. & YARRINGTON,LANE
Partner: UNT Libraries Government Documents Department