11 Matching Results

Search Results

Advanced search parameters have been applied.

High reflector absorptance measurements by the surface thermal lensing technique

Description: Surface thermal lensing is an alternate configuration of a photothermal deflection system that was used to measure low levels of optical absorption. The thermal lensing configuration facilitated the alignment of the pump and probe laser beams by using a larger diameter probe beam. This technique was applied to high performance optical coatings, specifically high reflectors at 511 nm, zero degrees angle of incidence. The absorptance of these coatings was previously measured using a high power copper vapor laser system. A high power copper laser beam is focused onto a -2 mm diameter spot. A thermal camera senses the temperature rise with respect to the rest of the coating. The temperature change, power density and beam diameter were used with an empirical formula that yields optical absorption. The surface thermal lensing technique was able to resolve absorption levels lower than that achieved with the copper laser method.
Date: November 1, 1996
Creator: Chow, R.; Taylor, J.R.; Wu, Z.L.; Krupka, R. & Yang, T.
Partner: UNT Libraries Government Documents Department

Low-temperature photoluminescence of detector-grade JgO/sub 2/

Description: The low-temperature photoluminescence of HgI/sub 2/ is reported. Three main luminescence bands are observed, with peaks at approx. 2.30, 2.20, and 2.00 eV at 77K. At 4.2K, the highest energy peak shows considerable structure. The temperature dependence of these lines indicates both free and bound exciton recombination, and very small exciton binding energies (approx. 3 to 4 meV) have been estimated. A comparison of the results of sublimation and doping experiments suggests that the lowest energy band may be related to impurities, whereas the middle-energy band is related to I content. The two strongest bound exciton lines comprising the high-energy band show systematic correlations with the middle-energy, I- related band. Further correlations between these spectral features and the performance of nuclear radiation detectors fabricated from these samples are also noted. The temperature coefficient of the band gap is estimated from the spectral shift of luminescence lines to be approximately -1.13 x 10/sup -4/ eV/K between 32K and 45K.
Date: January 1, 1982
Creator: Wu, Z.L.; Merz, J.L.; van den Berg, L. & Schnepple, W.F.
Partner: UNT Libraries Government Documents Department

Low-temperature photoluminescence of detector-grade HgI/sub 2/

Description: The low-temperature photoluminescence of HgI/sub 2/ is reported. Three main luminescence bands are observed, with peaks at approx. 2.30, 2.20, and 2.00 eV at 77 K. At 4.2 K, the highest energy peak shows considerable structure. The temperature dependence of these lines indicates both free and bound exciton recombination, and very small exciton binding energies (approx. 3 to 5 MeV) have been estimated. A comparison of the results of sublimation and doping experiments suggests that the lowest energy band may be related to impurities, whereas the middle-energy band is related to I content. The two strongest bound exciton lines comprising the high-energy band show systematic correlations with the middle-energy, I-related band. Further correlations between these spectral features and the performance of nuclear radiation detectors fabricated from these samples are also noted. The temperature coefficient of the band gap is estimated from the spectral shift of luminescence lines to be approximately -1.13 x 10/sup -4/ eV/K between 32 K and 45 K.
Date: January 1, 1981
Creator: Merz, J.L.; Wu, Z.L.; van den Berg, L. & Schnepple, W.F.
Partner: UNT Libraries Government Documents Department

Low level absorptance measurements and scans of high performance optical coatings for atomic vapor laser isotope separation applications

Description: A surface thermal lensing and a radiometric technique was used to characterize the absorptance dependence on time, power, site, and technique of low absorptance optical multilayered coatings.
Date: January 24, 1998
Creator: Chow, R.; Taylor, J.R.; Wu, Z.L.; Krupka, R. & Yang, T.
Partner: UNT Libraries Government Documents Department

Absorptance measurements of transmissive optical components by the surface thermal lensing technique

Description: The surface thermal lensing technique (STL) successfully resolved and measured the absorptance of transmissive optical components: near- normal angle-of-incidence anti-reflectors and beam splatters. The STL system uses an Ar ion laser to pump the components at 514.5 mn. The absorptance-induced surface deformation diffracts the HeNe probe beam into a photo-detector. The signal intensity was calibrated with a sample of known absorptance. The optical components were designed to function in a copper vapor laser (CVL) transport system, and were previously tested for absorptance with a high power CVL system at 511 rtm. To assure proper absorptance data from the STL system, the pump laser power densities were set at the operational level of the coatings, absorptance time trends were monitored, and absorptance area scans were made. Both types of transmissive optics are more stable than the CVL high reflectors that were measured in another study. Parameter studies based on Fresnel diffraction theory were also performed to optimize experimental condition. The STL system was assessed to have 10 ppb sensitivity for absorption measurement given 2 W of pump power.
Date: September 24, 1997
Creator: Chow, R.; Taylor, J.R.; Wu, Z.L.; Han, Y. & Tian, L.Y.
Partner: UNT Libraries Government Documents Department

Characterization of nodular and thermal defects in hafnia/silica multilayer coatings using optical, photothermal, and atomic force microscopy

Description: Multilayer coatings manufactured from metallic hafnium and silica sources by reactive electron beam deposition, are being developed for high fluence optics in a fusion laser with a wavelength of 1053 nm and a 3 ns pulse length. Damage threshold studies have revealed a correlation between laser damage and nodular defects, but interestingly laser damage is also present in nodule-free regions. Photothermal studies of optical coatings reveal the existence of defects with strong optical absorption in nodule-free regions of the coating. A variety of microscopic techniques were employed to characterize the effects for a better understanding of the thermal properties of nodular defects and role of thermal defects in laser damage. Photothermal microscopy, utilizing the surface thermal lensing technique, was used to map the thermal characteristics of 3 mm x 3 mm areas of the coatings. High resolution subaperture scans, with a 1 pm step size and a 3 um pump beam diameter, W= conducted on the defects to characterize their photothermal properties. Optical and atomic force microscopy was used to visually identify defects and characterize their topography. The defects were then irradiated to determine the role of nodular and thermal defects in limiting the damage threshold of the multilayer.
Date: December 24, 1997
Creator: Stolz, C.J.; Yoshiyama, J.M.; Salleo, A.; Wu, Z.L.; Green, J. & Krupka, R.
Partner: UNT Libraries Government Documents Department

Influence of microstructure on laser damage threshold of IBS coatings

Description: Ion-beam sputtering (IBS) coatings were developed for the laser gyro industry to meet significantly different requirements than those of fusion lasers. Laser gyro mirrors are small (< 25 mm) and require low losses (< 30 ppm typical) and high stability with long exposures to low power laser energy. In contrast, fusion laser optics are large (< 1 meter), have significantly reduced loss requirements (< 5,000 ppm) and high damage thresholds (> 26 J/cm{sup 2} at 1,064 nm with 3-ns pulses). As part of the National Ignition Facility (NIF) coating development effort, IBS coatings are being studied to explore the possible benefits of this technology to NIF optics. As an initial step to achieving the NIF size and damage threshold requirements, the coating process is being scaled to uniformly coat a 20 x 40 cm{sup 2} area with reduced spectral, reflected wavefront, and laser damage threshold requirements. Here, multilayer coatings deposited by ion-beam sputtering with amorphous layers were found to have lower damage thresholds at 1,064 nm than similar coatings with crystalline layers. Interestingly, at higher fluences the damage was less severe for the amorphous coatings. The magnitude of the difference in damage thresholds between the two different microstructures was strongly influenced by the size of the tested area. To better understand the microstructure effects, single layers of HfO{sub 2} with different microstructures were studied using transmission electron microscopy, ellipsometry, and a photothermal deflection technique. Since the laser damage initiated at defects, the influence of thermal diffusivity on thermal gradients in nodular defects is also presented.
Date: January 5, 1996
Creator: Stolz, C.J.; Genin, F.Y.; Kozlowski, M.R.; Long, D.; Lalazari, R.; Wu, Z.L. et al.
Partner: UNT Libraries Government Documents Department

Laser modulated scattering as a nondestructive evaluation tool for optical surfaces and thin film coatings

Description: Laser modulated scattering (LMS) is introduced as a non-destructive evaluation tool for defect inspection and characterization of optical surfaces and thin film coatings. This technique is a scatter sensitive version of the well-known photothermal microscopy (PTM) technique. It allows simultaneous measurement of the DC and AC scattering signals of a probe laser beam from an optical surface. By comparison between the DC and AC scattering signals, one can differentiate absorptive defects from non-absorptive ones. This paper describes the principle of the LMS technique and the experimental setup, and illustrates examples on using LMS as a tool for nondestructive evaluation of high quality optics.
Date: December 22, 1999
Creator: Feit, M D; Kozlowski, M R; Rubenchik, A M; Sheehan, L & Wu, Z L
Partner: UNT Libraries Government Documents Department

Single-beam photothermal microscopy - a new diagnostic tool for optical materials

Description: A novel photothermal microscopy (PTM) is developed which uses only one laser beam, working as both the pump and the probe. The principle of this single-beam PTM is based on the detection of the second harmonic component of the laser modulated scattering (LMS) signal. This component has a linear dependence on the optical absorptance of the tested area and a quadratic dependence on the pump laser power. Using a pump laser at the wavelengths of 514.5- and 532-nm high-resolution photothermal scans are performed for polished fused silica surfaces and a HfO{sub 2}/SiO{sub 2} multilayer coatings. The results are compared with those from the traditional two-beam PTM mapping. It is demonstrated that the single-beam PTM is more user-friendly (i.e. no alignment is needed) than conventional two-beam PTM and, offers a higher spatial resolution for defect detection.
Date: December 22, 1998
Creator: Feit, M. D.; Kozlowski, M.; Natoli, J. Y.; Rubenchik, A. M.; Sheehan, L.; Wu, Z. L. et al.
Partner: UNT Libraries Government Documents Department