19 Matching Results

Search Results

Advanced search parameters have been applied.

Calculating IP Tuning Knobs for the PEP II High Energy Ring using Singular Value Decomposition, Response Matrices and an Adapted Moore Penrose Method

Description: The PEP II lattices are unique in their detector solenoid field compensation scheme by utilizing a set of skew quadrupoles in the IR region and the adjacent arcs left and right of the IP. Additionally, the design orbit through this region is nonzero. This combined with the strong local coupling wave makes it very difficult to calculate IP tuning knobs which are orthogonal and closed. The usual approach results either in non-closure, not being orthogonal or the change in magnet strength being too big. To find a solution, the set of tuning quads had to be extended which resulted having more degrees of freedom than constraints. To find the optimal set of quadrupoles which creates a linear, orthogonal and closed knob and simultaneously minimizing the changes in magnet strength, the method using Singular Value Decomposition, Response Matrices and an Adapted Moore Penrose method had to be extended. The results of these simulations are discussed below and the results of first implementation in the machine are shown.
Date: November 7, 2007
Creator: Wittmer, W.
Partner: UNT Libraries Government Documents Department

A Parallel Controls Software Approach for PEP II: AIDA & Matlab Middle Layer

Description: The controls software in use at PEP II (Stanford Control Program - SCP) had originally been developed in the eighties. It is very successful in routine operation but due to its internal structure it is difficult and time consuming to extend its functionality. This is problematic during machine development and when solving operational issues. Routinely, data has to be exported from the system, analyzed offline, and calculated settings have to be reimported. Since this is a manual process, it is time consuming and error-prone. Setting up automated processes, as is done for MIA (Model Independent Analysis), is also time consuming and specific to each application. Recently, there has been a trend at light sources to use MATLAB as the platform to control accelerators using a 'MATLAB Middle Layer' (MML), and so called channel access (CA) programs to communicate with the low level control system (LLCS). This has proven very successful, especially during machine development time and trouble shooting. A special CA code, named AIDA (Accelerator Independent Data Access), was developed to handle the communication between MATLAB, modern software frameworks, and the SCP. The MML had to be adapted for implementation at PEP II. Colliders differ significantly in their designs compared to light sources, which poses a challenge. PEP II is the first collider at which this implementation is being done. We will report on this effort, which is still ongoing.
Date: November 6, 2007
Creator: Wittmer, W.; Colocho, W.; White, G. & /SLAC
Partner: UNT Libraries Government Documents Department

Detection of Instrumental Drifts in the PEP II LER BPM System

Description: During the last PEP-II run a major goal was to bring the Low-Energy Ring optics as close as possible to the design. A large number of BPMs exhibited sudden artificial jumps that interfered with this effort. The source of the majority of these jumps had been traced to the filter-isolator boxes (FIBs) near the BPM buttons. A systematic approach to find and repair the failing units had been developed and implemented. Despite this effort, the instrumental orbit jumps never completely disappeared. To trace the source of this behavior a test setup, using a spare Bergoz MX-BPM processor (kindly provided by SPEAR III at SSRL), was connected in parallel to various PEP-II BPM processors. In the course of these measurements a slow instrumental orbit drift was found which was clearly not induced by a moving positron beam. Based on the size of the system and the limited time before PEP-II closes in Oct.2008, an accelerator improvement project was initiated to install BERGOZ BPM-MX processors close to all sextupoles.
Date: November 7, 2007
Creator: Wittmer, W.; Fisher, A.S.; Martin, D.J.; Sebek, J.J. & /SLAC
Partner: UNT Libraries Government Documents Department

Vibration Budget for SuperB

Description: We present a vibration budget for the SuperB accelerator. We include ground motion data, motion sensitivity of machine components, and beam feedback system requirements. The SuperB accelerator design attains at least 50 times higher than current B-factories due to smaller beam sizes and a crabbed waist crossing angle scheme at the IP (interaction point). The beam size (1{sigma}) at the IP will be about 10 {micro}m (horizontal) by 40 nm (vertical). These small beam sizes will make the luminosity very sensitive to mechanical vibration and electrical noise. Relative vertical misalignment of the two beams at the IP by only 8 nm will result in a 1% reduction in luminosity. The corresponding horizontal alignment tolerance of is 250x looser (2 {micro}m). The vertical beam angle at the IP for a 1% luminosity loss is fairly loose at 200 {micro}rad, and the horizontal beam angle tolerance is looser still. We will focus on vertical beam position at the IP, since this presents the greatest alignment challenge. The values presented here are for a closed orbit with tunes near a half-integer in the SuperB v.12 lattice.
Date: April 5, 2011
Creator: Bertsche, K; Wittmer, W.; /SLAC; Bolzon, B.; Brunetti, L.; Jeremie, A. et al.
Partner: UNT Libraries Government Documents Department

SLAC Linac Preparations for FACET

Description: The SLAC 3km linear electron accelerator has been cut at the two-thirds point to provide beams to two independent programs. The last third provides the electron beam for the Linac Coherent Light Source (LCLS), leaving the first two-thirds available for FACET, the new experimental facility for accelerator science and test beams. In this paper, we describe this separation and projects to prepare the linac for the FACET experimental program.
Date: February 7, 2011
Creator: Erickson, R.; Bentson, L.; Kharakh, D.; Owens, A.; Schuh, P.; Seeman, J. et al.
Partner: UNT Libraries Government Documents Department

Optics Design for FACET

Description: FACET is a proposed facility at SLAC National Accelerator Laboratory. It will provide high energy, tightly focused and compressed electron and positron bunches for beam driven plasma wakefield acceleration research and other experiments. FACET will be built in the SLAC linac sector 20, where it will be separated from the LCLS located immediately downstream and will take advantage of the upstream 2 km linac for up to 23 GeV beam acceleration. FACET will also include an upgrade to linac sector 10, where a new e+ compressor chicane will be installed. The sector 20 will contain a new optics consisting of two chicanes for e+ and ebunch length compression, a final focus and an experimental line with a dump. The e+ and e- chicanes will allow the transport of e+ and ebunches together, their compression and proper positioning of e+ witness bunch behind the e- drive bunch at the plasma Interaction Point. The new optics will mostly use the existing SLAC magnets to minimize the project cost. Details of the FACET optics design and results of particle tracking simulations are presented.
Date: May 7, 2009
Creator: Nosochkov, Y.; Bane, K.; Bentson, L.; Erickson, R.; Hogan, M.J.; Li, N. et al.
Partner: UNT Libraries Government Documents Department

SUPER-B LATTICE STUDIES

Description: The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.
Date: August 25, 2010
Creator: Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF et al.
Partner: UNT Libraries Government Documents Department

Luminosity Improvement at PEP-II Based on Optics Model and Beam-Beam Simulation

Description: Since the beginning of this year, we have made significant improvements in the machine optics at PEP-II. As a result, the specific luminosity increased nearly 20%. The largest luminosity gain actually came from minimizing nonlinear chromatic effects and running both rings much closer to the half integer resonance in the horizontal plane.
Date: June 21, 2006
Creator: Cai, Y.; Colocho, W.; Diecker, F-J.; Nosochkov, Y.; Raimondi, P.; Seeman, J. et al.
Partner: UNT Libraries Government Documents Department

Commissioning the 90 Degree Lattice for the PEP II High Energy Ring

Description: In order to benefit from further reduction of the vertical IP beta function of the PEP-II high energy ring (HER) the bunch length should be reduced. This will be achieved by changing the phase advance from 60 degree to 90 degree in the four arcs not adjacent to the IR region, thus reducing momentum compaction by about 30% and reducing bunch length from a present 12 mm down to 8.5 mm at low beam current. In preparation to implement the 90 degree lattice the main HER quadrupole and sextupole strings and their power supplies have been reconfigured. The synchrotron tune initially will be lower but can be brought back by raising the rf voltage. Beam emittance is held at 48 nmr by introducing a significant dispersion beat in the arcs. The lattice was successfully commissioned at currents up to 800 mA in August 2007. In this paper we will compare the actual machine with the predicted behaviour, explain the correction strategies used and give an overall assessment of the operation and the benefit of the new lattice configuration.
Date: November 2, 2011
Creator: Wittmer, W.; Cai, Y.; Cheng, W.X.; Colocho, W.S.; Decker, F.J.; Ecklund, S. et al.
Partner: UNT Libraries Government Documents Department

A New Chicane Experiment in PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

Description: Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.
Date: June 11, 2008
Creator: Pivi, M. T.; Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D. et al.
Partner: UNT Libraries Government Documents Department

New Low Emittance Lattice for the Super-B Accelerator

Description: New low emittance lattices have been designed for the asymmetric SuperB accelerator, aiming at a luminosity of 10{sup 36} cm{sup -2} s{sup -1}. Main optics features are two alternating arc cells with different horizontal phase advance, decreasing beam emittance and allowing at the same time for easy chromaticity correction in the arcs. Emittance can be further reduced by a factor of two for luminosity upgrade. Spin rotation schemes for the e{sup -} beam have been studied to provide longitudinal polarization at the IP, and implementation into the lattice is in progress.
Date: October 21, 2011
Creator: Biagini, M.E.; Boscolo, M.; Raimondi, P.; Tomassini, S.; Zobov, M.; /Frascati et al.
Partner: UNT Libraries Government Documents Department

First Beam to FACET

Description: The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.
Date: December 13, 2011
Creator: Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S. et al.
Partner: UNT Libraries Government Documents Department

A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

Description: Beam instability caused by the electron cloud has been observed in positron and proton storage rings, and it is expected to be a limiting factor in the performance of future colliders [1-3]. The effect is expected to be particularly severe in magnetic field regions. To test possible mitigation methods in magnetic fields, we have installed a new 4-dipole chicane experiment in the PEP-II Low Energy Ring (LER) at SLAC with both bare and TiN-coated aluminum chambers. In particular, we have observed a large variation of the electron flux at the chamber wall as a function of the chicane dipole field. We infer this is a new high order resonance effect where the energy gained by the electrons in the positron beam depends on the phase of the electron cyclotron motion with respect to the bunch crossing, leading to a modulation of the secondary electron production. Presumably the cloud density is modulated as well and this resonance effect could be used to reduce its magnitude in future colliders. We present the experimental results obtained during January 2008 until the April final shut-down of the PEP-II machine.
Date: July 3, 2008
Creator: Pivi, M.T.F.; Ng, J.S.T.; Arnett, D.; Cooper, F.; Kharakh, D.; King, F.K. et al.
Partner: UNT Libraries Government Documents Department

FACET: The New User Facility at SLAC

Description: FACET (Facility for Advanced Accelerator and Experimental Tests) is a new User Facility at SLAC National Accelerator Laboratory. Its high power electron and positron beams make it a unique facility, ideal for beam-driven Plasma Wakefield Acceleration studies. The first 2 km of the SLAC linac produce 23 GeV, 3.2 nC electron and positron beams with short bunch lengths of 20 {mu}m. A final focusing system can produce beam spots 10 {mu}m wide. User-aided Commissioning took place in summer 2011 and FACET will formally come online in early 2012. We present the User Facility, the current features, planned upgrades and the opportunities for further experiments. Accelerators are our primary tool for discovering the fundamental laws to the universe. Each new frontier we probe requires a new, more powerful method. Accelerators are therefore increasing in size and cost. The future of this field requires new accelerating techniques that can reach the high energies required over shorter distances. New concepts for high gradient acceleration include utilizing the wakes in plasma and dielectric and metallic structures. FACET was built to provide a test bed for novel accelerating concepts with its high charge and highly compressed beams. As a test facility unlike any other, it has also attracted groups interested in beam diagnostic techniques and terahertz studies. The first phase of the construction was completed in May 2011. Beam commissioning began in June and was interleaved with the installation of five experiments. Users were invited to aid with the commissioning for the month of August during which time experimental hardware and software were checked out and some first measurements were taken. FACET is currently in the process of becoming a Department of Energy User Facility for High Energy Physics.
Date: December 13, 2011
Creator: Clarke, C.I.; Decker, F.J.; Erikson, R.; Hast, C.; Hogan, M.J.; Iverson, R. et al.
Partner: UNT Libraries Government Documents Department

Design of a 10**36 CM-2 S-1 Super-B Factory

Description: Parameters have been studied for a high luminosity e{sup +}e{sup -} collider operating at the Upsilon 4S that would deliver a luminosity of 1 to 4 x 10{sup 36}/cm{sup 2}/s. This collider, called a Super-B Factory, would use a combination of linear collider and storage ring techniques. In this scheme an electron beam and a positron beam are stored in low-emittance damping rings similar to those designed for a Linear Collider (LC) or the next generation light source. A LC style interaction region is included in the ring to produce sub-millimeter vertical beta functions at the collision point. A large crossing angle (+/- 24 mrad) is used at the collision point to allow beam separation. A crab-waist scheme is used to reduce the hourglass effect and restore peak luminosity. Beam currents of 1.8 A at 4 x 7 GeV in 1251 bunches can produce a luminosity of 10{sup 36}/cm{sup 2}/s with upgrade possibilities. Such a collider would produce an integrated luminosity of about 10,000 fb{sup -1} (10 ab{sup -1}) in a running year (10{sup 7} sec) at the {gamma}(4S) resonance. Further possibilities include having longitudinally polarized e- at the IR and operating at the J/Psi and Psi beam energies.
Date: October 24, 2011
Creator: Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S. et al.
Partner: UNT Libraries Government Documents Department

Super-B Project Overview

Description: The SuperB project aims at the construction of an asymmetric very high luminosity B-Factory on the Frascati/Tor Vergata (Italy) area, providing a uniquely sensitive probe of New Physics in the flavour sector of the Standard Model. The luminosity goal of 10{sup 36} cm{sup -2} s{sup -1} can be reached with a new collision scheme with 'large Piwinski angle' (LPA) and the use of 'crab waist sextupoles' (CW). A LPA&CW Interaction Region (IR) has been successfully tested at the DA{Phi}NE {Phi}-Factory at LNF-Frascati in 2008. The LPA&CW scheme, together with very low {beta}*, will allow for operation with relatively low beam currents and reasonable bunch length, comparable to those of PEP-II and KEKB. In the High Energy Ring (HER), two spin rotators will bring longitudinally polarized beams into collision at the IP. The lattice has been designed with a very low intrinsic emittance and is quite compact, less than 2 km long. The tight focusing requires the final doublet quadrupoles to be very close to the IP and very compact. A Conceptual Design Report was published in March 2007, and beam dynamics and collective effects R&D studies are in progress in order to publish a Technical Design Report by the end of 2010.
Date: August 26, 2010
Creator: Biagini, M.E.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Guiducci, S. et al.
Partner: UNT Libraries Government Documents Department

Status of the Super-B factory Design

Description: The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.
Date: May 18, 2012
Creator: Wittmer, W.; U., /Michigan State; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y. et al.
Partner: UNT Libraries Government Documents Department

Recent SuperB Design Choices Improve Next-Generation e e___ B-Factory Collider

Description: The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 10{sup 36} cm{sup -2} sec{sup -1}. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the {Upsilon}(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low {beta}*{sub y} without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron radiation applications.
Date: August 19, 2011
Creator: Wittmer, W.; Bertsche, K.; Chao, A.; Novokhatski, A.; Nosochkov, Y.; Seeman, J. et al.
Partner: UNT Libraries Government Documents Department