2 Matching Results

Search Results

Advanced search parameters have been applied.

Thermal simulation and economic assessment of unglazed transpired collector systems

Description: Unglazed transpired collectors (UTCs) have recently emerged as a new solar air heating technology. They are relatively inexpensive, efficient, and particularly suited to applications in which a high outdoor air requirement must be met. A TRNSYS model has been created for UTC systems. Annual simulations are performed for several representative buildings. The statewide economic potential of UTC systems is assessed for Wisconsin. UTC systems on existing buildings are competitive with electric heating systems but not with gas or oil heating. Electric heating is not widely used in most buildings that are well-suited for UTC systems, with the exception of large apartment buildings. Therefore, there is no significant statewide economic potential for retrofit of UTC systems on existing buildings except in the residential sector. However, UTC systems are cost effective for new buildings because their low first cost allows them to compete with gas and oil heating.
Date: October 1, 1996
Creator: Summers, D.N.; Mitchell, J.W.; Klein, S.A. & Beckman, W.A.
Partner: UNT Libraries Government Documents Department

The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

Description: High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.
Date: June 15, 1997
Creator: Dale, M. C.; Okos, M. & Burgos, N.
Partner: UNT Libraries Government Documents Department