10 Matching Results

Search Results

Advanced search parameters have been applied.

Somatic genomic variations in extra-embryonic tissues

Description: In the mature chorion, one of the membranes that exist during pregnancy between the developing fetus and mother, human placental cells form highly specialized tissues composed of mesenchyme and floating or anchoring villi. Using fluorescence in situ hybridization, we found that human invasive cytotrophoblasts isolated from anchoring villi or the uterine wall had gained individual chromosomes; however, chromosome losses were detected infrequently. With chromosomes gained in what appeared to be a chromosome-specific manner, more than half of the invasive cytotrophoblasts in normal pregnancies were found to be hyperdiploid. Interestingly, the rates of hyperdiploid cells depended not only on gestational age, but were strongly associated with the extraembryonic compartment at the fetal-maternal interface from which they were isolated. Since hyperdiploid cells showed drastically reduced DNA replication as measured by bromodeoxyuridine incorporation, we conclude that aneuploidy is a part of the normal process of placentation potentially limiting the proliferative capabilities of invasive cytotrophoblasts. Thus, under the special circumstances of human reproduction, somatic genomic variations may exert a beneficial, anti-neoplastic effect on the organism.
Date: May 21, 2010
Creator: Weier, Jingly F.; Ferlatte, Christy & Weier, Heinz-Ulli G.
Partner: UNT Libraries Government Documents Department

Quantitive DNA Fiber Mapping

Description: Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.
Date: January 28, 2008
Creator: Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F. & Weier, Heinz-Ulli G.
Partner: UNT Libraries Government Documents Department

Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

Description: Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.
Date: December 4, 2008
Creator: Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F. & Weier, Heinz-Ulli G.
Partner: UNT Libraries Government Documents Department

Chromosomal Rainbows detect Oncogenic Rearrangements of Signaling Molecules in Thyroid Tumors

Description: Altered signal transduction can be considered a hallmark of many solid tumors. In thyroid cancers the receptor tyrosine kinase (rtk) genes NTRK1 (Online Mendelian Inheritance in Man = OMIM *191315, also known as 'TRKA'), RET ('Rearranged during Transfection protooncogene', OMIM *164761) and MET (OMIM *164860) have been reported as activated, rearranged or overexpressed. In many cases, a combination of cytogenetic and molecular techniques allows elucidation of cellular changes that initiate tumor development and progression. While the mechanisms leading to overexpression of the rtk MET gene remain largely unknown, a variety of chromosomal rearrangements of the RET or NTKR1 gene could be demonstrated in thyroid cancer. Abnormal expressions in these tumors seem to follow a similar pattern: the rearrangement translocates the 3'-end of the rtk gene including the entire catalytic domain to an expressed gene leading to a chimeric RNA and protein with kinase activity. Our research was prompted by an increasing number of reports describing translocations involving ret and previously unknown translocation partners. We developed a high resolution technique based on fluorescence in situ hybridization (FISH) to allow rapid screening for cytogenetic rearrangements which complements conventional chromosome banding analysis. Our technique applies simultaneous hybridization of numerous probes labeled with different reporter molecules which are distributed along the target chromosome allowing the detection of cytogenetic changes at near megabase-pair (Mbp) resolution. Here, we report our results using a probe set specific for human chromosome 10, which is altered in a significant portion of human thyroid cancers (TC's). While rendering accurate information about the cytogenetic location of rearranged elements, our multi-locus, multi-color analysis was developed primarily to overcome limitations of whole chromosome painting (WCP) and chromosome banding techniques for fine mapping of breakpoints in papillary thyroid cancer (PTC).
Date: August 19, 2010
Creator: O'Brien, Benjamin; Jossart, Gregg H.; Ito, Yuko; Greulich-Bode, Karin M.; Weier, Jingly F.; Munne, Santiago et al.
Partner: UNT Libraries Government Documents Department

DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

Description: Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.
Date: January 30, 2009
Creator: Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas et al.
Partner: UNT Libraries Government Documents Department

BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer

Description: Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relatively rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.
Date: March 9, 2009
Creator: Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei; Wang, Mei; Weier, Jingly F.; Zitzelsberger, Horst F. et al.
Partner: UNT Libraries Government Documents Department

Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days.

Description: Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Although a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 - embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs.
Date: February 25, 2009
Creator: Lu, Chun-Mei; Kwan, Johnson; Weier, Jingly F.; Baumgartner, Aldof; Wang, Mei; Escudero, Tomas et al.
Partner: UNT Libraries Government Documents Department

Kinase Expression and Chromosomal Rearrangements in Papillary Thyroid Cancer Tissues: Investigations at the Molecular and Microscopic Levels

Description: Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, ret or the neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- or interchromosomal rearrangements have been suggested as a cause of the disease. The 1986 accident at the nuclear power plant in Chernobyl, USSR, led to the uncontrolled release of high levels of radioisotopes. Ten years later, the incidence of childhood papillary thyroid cancer (chPTC) near Chernobyl had risen by two orders of magnitude. Tumors removed from some of these patients showed aberrant expression of the ret RTK gene due to a ret/PTC1 or ret/PTC3 rearrangement involving chromosome 10. However, many cultured chPTC cells show a normal G-banded karyotype and no ret rearrangement. We hypothesize that the 'ret-negative' tumors inappropriately express a different oncogene or have lost function of a tumor suppressor as a result of chromosomal rearrangements, and decided to apply molecular and cytogenetic methods to search for potentially oncogenic chromosomal rearrangements in Chernobyl chPTC cases. Knowledge of the kind of genetic alterations may facilitate the early detection and staging of chPTC as well as provide guidance for therapeutic intervention.
Date: July 7, 2009
Creator: Weier, Heinz-Ulrich; Kwan, Johnson; Lu, Chun-Mei; Ito, Yuko; Wang, Mei; Baumgartner, Adolf et al.
Partner: UNT Libraries Government Documents Department

Molecular cytogenetic characterization of a human thyroid cancercell line

Description: The incidence of papillary thyroid carcinoma (PTC) increases significantly after exposure of the head and neck region to ionizing radiation, yet we know neither the steps involved in malignant transformation of thyroid epithelium nor the specific carcinogenic mode of action of radiation. Such increased tumor frequency became most evident in children after the 1986 nuclear accident in Chernobyl, Ukraine. In the twelve years following the accident, the average incidence of childhood PTCs (chPTC) increased over one hundred-fold compared to the rate of about 1 tumor incidence per 10{sup 6} children per year prior to 1986. To study the etiology of radiation-induced thyroid cancer, we formed an international consortium to investigate chromosomal changes and altered gene expression in cases of post-Chernobyl chPTC. Our approach is based on karyotyping of primary cultures established from chPTC specimens, establishment of cell lines and studies of genotype-phenotype relationships through high resolution chromosome analysis, DNA/cDNA micro-array studies, and mouse xenografts that test for tumorigenicity. Here, we report the application of fluorescence in situ hybridization (FISH)-based techniques for the molecular cytogenetic characterization of a highly tumorigenic chPTC cell line, S48TK, and its subclones. Using chromosome 9 rearrangements as an example, we describe a new approach termed ''BAC-FISH'' to rapidly delineate chromosomal breakpoints, an important step towards a better understanding of the formation of translocations and their functional consequences.
Date: January 4, 2006
Creator: Weier, Heinz-Ulrich G.; Tuton, Tiffany B.; Ito, Yuko; Chu, LisaW.; Lu, Chung-Mei; Baumgartner, Adolf et al.
Partner: UNT Libraries Government Documents Department

Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

Description: Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.
Date: February 8, 2006
Creator: Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W. et al.
Partner: UNT Libraries Government Documents Department