3 Matching Results

Search Results

Advanced search parameters have been applied.

Progress on PEEM3 - An Aberration Corrected X-Ray PhotoemissionElectron Microscope at the ALS

Description: A new ultrahigh-resolution photoemission electron microscope called PEEM3 is being developed and built at the Advanced Light Source (ALS). An electron mirror combined with a much-simplified magnetic dipole separator is to be used to provide simultaneous correction of spherical and chromatic aberrations. It is installed on an elliptically polarized undulator (EPU) beamline, and will be operated with very high spatial resolution and high flux to study the composition, structure, electric and magnetic properties of complex materials. The instrument has been designed and is described. The instrumental hardware is being deployed in 2 phases. The first phase is the deployment of a standard PEEM type microscope consisting of the standard linear array of electrostatic electron lenses. The second phase will be the installation of the aberration corrected upgrade to improve resolution and throughput. This paper describes progress as the instrument enters the commissioning part of the first phase.
Date: May 20, 2006
Creator: MacDowell, Alastair A.; Feng, J.; DeMello, A.; Doran, A.; Duarte,R.; Forest, E. et al.
Partner: UNT Libraries Government Documents Department

An aberration corrected photoemission electron microscope at the advanced light source

Description: Design of a new aberration corrected Photoemission electron microscope PEEM3 at the Advanced Light Source is outlined. PEEM3 will be installed on an elliptically polarized undulator beamline and will be used for the study of complex materials at high spatial and spectral resolution. The critical components of PEEM3 are the electron mirror aberration corrector and aberration-free magnetic beam separator. The models to calculate the optical properties of the electron mirror are discussed. The goal of the PEEM3 project is to achieve the highest possible transmission of the system at resolutions comparable to our present PEEM2 system (50 nm) and to enable significantly higher resolution, albeit at the sacrifice of intensity. We have left open the possibility to add an energy filter at a later date, if it becomes necessary driven by scientific need to improve the resolution further.
Date: November 1, 2003
Creator: Feng, J.; MacDowell, A.A.; Duarte, R.; Doran, A.; Forest, E.; Kelez, N. et al.
Partner: UNT Libraries Government Documents Department