337 Matching Results

Search Results

Advanced search parameters have been applied.

Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

Description: 'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animals (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'
Date: June 1, 1998
Creator: McLachlan, J.
Partner: UNT Libraries Government Documents Department

Development of an in-situ microsensor for the measurements of chromium and uranium in groundwater at DOE sites. 1998 annual progress report

Description: 'The goal of this research is to develop novel electrochemical sensors for in-situ environmental monitoring of trace uranium and chromium. Such innovative remote/submersible and micromachined stripping-based devices will greatly enhance the detection of trace metals in a field setting, and should revolutionize the way such contaminants are being monitored. This report summarizes activity over the first 1.5 years of a 3-year project. This effort has led to the replacement of conventional stripping electrochemical protocols and systems with new innovative strategies for field monitoring of trace uranium and chromium, based on remotely deployable submersible sensors and micromachined hand-held total stripping analyzers. Eventually, these developments will allow to move the measurement of these metals to the field and to perform them more rapidly, reliably and inexpensively. Improved Stripping Procedures for U and Cr Traditionally, Cr and U have been measured separately using the adsorptive accumulation of their complexes with DTPA and propyl gallate (PG), respectively. To facilitate their on-site detection, the authors have developed new adsorptive stripping protocols that allow the simultaneous and rapid detection of Cr and U down to low ppb concentrations. One such new scheme involves the use of a mixed ligand (DTPA/PG) solution that allows simultaneous trace measurements in a single run (1). Numerous experimental parameters were optimized to assure that the attractive performance of the individual single-element protocols are not compromised. Simultaneous measurements in groundwater samples were documented. Alternately, they employed a single but more universal ligand (cupferron) for the simultaneous monitoring of Cr and U (2). Under optimal conditions, competition of these metals for the ligand and coadsoprtion effects were minimized, and different concentrations of the mixture components can be tolerated. A major goal and focus of this project has been the development of a miniaturized stripping analytical system, produced by micromachining technology. Such new micromachined ...
Date: June 1, 1998
Creator: Wang, J.
Partner: UNT Libraries Government Documents Department

Phase equilibria modification by electric fields. 1998 annual progress report

Description: 'The objective of this project is to use electric fields to favorably manipulate the thermodynamic and transport properties of mixtures so that higher separation efficiencies can be achieved. The main focus is to understand and quantify the influence of electric fields on vapor-liquid, liquid-liquid, and solid-liquid systems. It is expected that this program will lead to greater separation efficiency in a wide range of environmental treatment processes, including solvent extraction, sorption, distillation, and stripping. Such processes are widely used by DOE for treatment of wastes and sites contaminated with heavy metals, radionuclides, and organic solvents. Particular examples of applications of vapor-liquid- equilibria modification can be found in the separation of volatile organic compounds by either stripping or distillation. Improvements can also be made in liquid-liquid-extraction processes of TRU, Sr, Tc, and Cs by both thermodynamic and transport enhancements.'
Date: June 1, 1998
Creator: Tsouris, C.
Partner: UNT Libraries Government Documents Department

Environmentally-induced malignancies: An in vivo model to evaluate the health impact of chemicals in mixed waste. 1997 annual progress report

Description: 'Occupational or environmental exposure to organic ligands, solvents, fuel hydrocarbons, and polychlorinated biphenyls is linked to increased risk of developing leukemia, a blood cancer. The long term health effects of exposure to complex mixtures of chemicals and radionuclides are of particular concern because their biologic effects may synergize to increase risk of malignancy. Increased understanding of steps in the progression pathway of a normal cell to a cancer cell is important for biomonitoring, risk assessment and intervention in exposed individuals. Leukemias are characterized by multiple genetic aberrations. Accumulation of multiple genomic changes may reflect genomic instability in the affected ceils. Thus agents that induce DNA damage or genomic instability may increase accumulation of genomic alterations, thereby predisposing cells to transformation. However, not all DNA damaging agents predispose to transformation. Other factors such as genetic susceptibility, cell and tissue response to genotoxicity and cytotoxicity, DNA repair, etc. will impact malignant progression. The author proposed a progression model (Figure 1) of environmentally-induced leukemia that can be evaluated using mouse models.'
Date: January 1, 1997
Creator: Pallavicini, M.
Partner: UNT Libraries Government Documents Department

An investigation of homogeneous and heterogeneous sonochemistry for destruction of hazardous waste. 1998 annual progress report

Description: 'The primary objective of this research project is to acquire a deeper fundamental knowledge of acoustic cavitation and cavitation chemistry, and in doing so, to ascertain how ultrasonic irradiation can be more effectively applied to environmental problems. The primary objective will be accomplished by examining numerous aspects of sonochemical systems and acoustic cavitation. During the course of the project, the research group will investigate the significance of physical variables during sonolysis, sonochemical kinetics and reactive intermediates, and the behavior of heterogeneous (solid/liquid) systems. An additional component of the project includes utilizing various techniques to image cavitation bubble cloud development. This report summarizes results after 2 years of a 3 year investigation. Four on-going projects will be described. The first project is the destruction of polychlorinated biphenyls at multiple ultrasonic frequencies. The second project is a comprehensive study of how ultrasonic frequency influences sonochemical reaction rates; in particular, hydrogen peroxide formation. Finally, the sonochemical destruction of the pesticides dichlorvos (at 500 kHz) and carbofuran (parallel-plate reactor) has been examined.'
Date: June 1, 1998
Creator: Hua, I.
Partner: UNT Libraries Government Documents Department

A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 annual progress report

Description: 'Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, they examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, the authors measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which the authors try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies.'
Date: October 1, 1997
Creator: Faybishenko, B.
Partner: UNT Libraries Government Documents Department

Molecular profiling of microbial communities from contaminated sources: Use of substractive cloning methods and rDNA spacer sequences. 1997 annual progress report

Description: 'This project is to develop molecular methods for rapid characterization of microbial communities in contaminated ecosystems. The authors are exploring the use of {sup 16}s ribosomal DNA intergenic spacer regions (ISRs) to profile community composition. The choice proves to be a good one: there are 200--550 bases of 1 to 3 variable regions from which to choose species-specific probes, as well as 2--4 stretches of conserved sequence from which to develop universal PCR (polymerase chain reaction) primers. Preliminary community characterization is complete, and several types of arrays are under development to determine the types of bacteria present and the status of the ground water. Profiling the community composition of polluted groundwater will impact the broad field of microbial ecology as well as mixed-waste bioremediation. Results The samples the authors have been analysing were provided by Dr. Fred Brockman from Pacific Northwest Laboratory, and were collected at the US DOE Hanford site, Washington state. The samples were microbial filtrates from ground water polluted with 2 mg/L carbon tetrachloride and 250 mg/L nitrate and subjected to enrichment (acetate + nitrate) and recirculation. This project is described in some detail in PNNL-11113, Accelerated In Situ Bioremediation of Groundwater, by M.J. Truex, B.S. Hooker, and D.B. Anderson, July 1996.'
Date: December 1, 1997
Partner: UNT Libraries Government Documents Department

Sorption of colloids, organics, and metals onto gas-water, interfaces: Transport processes and potential remediation technology. 1997 annual progress report

Description: 'This research project has two objectives. The first is to improve basic understanding of contaminant interactions with gas-water interfaces, with emphasis on behavior of mixed contaminant systems. The second objective is to develop a sorptive microbubble fractionation remediation technique. Hypotheses supporting these objectives are: (1) contaminants and natural organics can sorb on and alter the interface hydrophobicity of the gas-water interfaces, and therefore influence sorption of colloids, metals, and radionuclides at gas-water interfaces; (2) surfactants can vastly increase sorption of colloids, metals and radionuclides selectively onto gas- water interfaces; (3) a sorptive microbubble fractionation remediation technique can be developed based on understanding of the previously mentioned processes. These hypotheses are being tested through quantification and visualization at both micro- and macro-scales.'
Date: January 1, 1997
Creator: Wan, J.
Partner: UNT Libraries Government Documents Department

Novel ceramic-polymer composite membranes for the separation of hazardous liquid waste. 1998 annual progress report

Description: 'This report summarizes the work progress over the last 1.75 years of a 3 year project. The objectives of the project have been to develop a new class of ceramic-supported polymeric membranes that could be tailored-designed for a wide-range of applications in remediation and pollution prevention. To date, a new class of chemically-modified ceramic membranes was developed for the treatment of oil-in-water emulsions and for the pervaporation removal of volatile organics from aqueous systems. These new ceramic-supported polymer (CSP) membranes are fabricated by modifying the pore surface of a ceramic membrane support by a graft polymerization process (Chaimberg and Cohen, 1994). The graft polymerization process consists of activating the membrane surface with alkoxy vinyl silanes onto which vinyl monomers are added via free-radical graft polymerization resulting in a thin surface layer of terminally anchored polymer chains. Reaction conditions are selected based on knowledge of the graft polymerization kinetics for the specific polymer/substrate system. The resultant ceramic-supported polymer (CSP) membrane is a composite structure in which mechanical strength is provided by the ceramic support and the selectivity is determined by the covalently bonded polymer brush layer. Thus, one of the unique attributes of the CSP membrane is that it can be used in environments where the polymer layer is swollen (or even completely miscible) in the mixture to be separated (Castro et al., 1993). It is important to note that the above modification process is carried out under mild conditions (e.g., temperature of about 70 C) and is well suited for large scale commercial application. In a series of studies, the applicability of a polyvinylpyrrolidone CSP membrane was demonstrated for the treatment of oil-in-water emulsion under a variety of flow conditions (Castro et al.,1996). Improved membrane performance was achieved due to minimization of surface adsorption of the oil components. For the ...
Date: June 1, 1998
Creator: Cohen, Y.
Partner: UNT Libraries Government Documents Department

Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1997 annual progress report

Description: 'The overall objective of the basic research grant is to characterize the potential of common hydrocarbon contaminants in ecosystems to act as endocrine disruptors. The three major lines of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects. and (3) a literature review to identify compounds at a variety of DOE sites that need to be examined for endocrine disrupting effects. By relating results obtained from this research project to contamination problems at various DOE sites. CBR will provide data and information on endocrine disrupting contaminants to DOE for consideration in risk analyses for determining clean-up levels and priorities needed at the sites.'
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Acid-base behavior in hydrothermal processing of wastes. 1997 annual progress report

Description: 'A major obstacle to the development of hydrothermal technology for treating DOE wastes has been a lack of scientific knowledge of solution chemistry, thermodynamics and transport phenomena. The progress over the last year is highlighted in the following four abstracts from manuscripts which have been submitted to journals. The authors also have made considerable progress on a spectroscopic study of the acid-base equilibria of Cr(VI). They have utilized novel spectroscopic indicators to study acid-base equilibria up to 380 C. Until now, very few systems have been studied at such high temperatures, although this information is vital for hydrothermal processing of wastes. The pH values of aqueous solutions of boric acid and KOH were measured with the optical indicator 2-naphthol at temperatures from 300 to 380 C. The equilibrium constant Kb-l for the reaction B(OH)3 + OH{sup -} = B(OH){sup -4} was determined from the pH measurements and correlated with a modified Born model. The titration curve for the addition of HCl to sodium borate exhibits strong acid-strong base behavior even at 350 C and 24.1 MPa. At these conditions, aqueous solutions of sodium borate buffer the pH at 9.6 t 0.25. submitted to Ind. Eng. Chem. Res. Acetic Acid and HCl Acid-base titrations for the KOH-acetic acid or NH{sub 3} -acetic acid systems were monitored with the optical indicator 2-naphthoic acid at 350 C and 34 MPa, and those for the HCl;Cl- system with acridine at 380 C and up to 34 MPa (5,000 psia ). KOH remains a much stronger base than NH,OH at high temperature. From 298 K to the critical temperature of water, the dissociation constant for HCl decreases by 13 orders of magnitude, and thus, the basicity of Cl{sup -} becomes significant. Consequently, the addition of NaCl to HCl raises the pH. The pH titration curves ...
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Development of an in-situ microsensor for the measurement of chromium and uranium in groundwater in DOE sites. Progress report, September 15, 1996-September 14, 1997

Description: 'The goal of this project is to develop, optimize and deploy a silicon-based micromachined stripping analyzer for field monitoring of trace levels of chromium and uranium. Such system will integrate sample-handling steps and necessary chemical reactions (using a flow-injection operation) with the already proven adsorptive stripping operation on a small planar chip. Besides the drastic reduction in the size of the analytical system, such miniaturization should lead to increased speed, minimal reagent consumption and disposal, higher sensitivity and improved precision and would revolutionize the way by which toxic metals are being monitored. The work during the first year has focused on three directions: (1) design and fabrication of the micromachined flow system for stripping measurements of chromium and uranium; (2) design and evaluation of a remote sensor for in-situ monitoring of chromium and uranium; and (3) developing and characterizing new electrodes for adsorptive stripping measurements of chromium and uranium.'
Date: January 1, 1997
Creator: Wang, J.
Partner: UNT Libraries Government Documents Department

Molecular dissection of the cellular mechanisms involved in nickel hyperaccumulation in plants. 1998 annual progress report

Description: 'Phytoremediation, the use of plants for environmental cleanup of pollutants, including toxic metals, holds the potential to allow the economic restoration of heavy metal and radionuclide contaminated sites. A number of terrestrial plants are known to naturally accumulate high levels of metals in their shoots (1--2% dry weight), and these plants have been termed metal-hyperaccumulators. Clearly, the genetic traits that determine metal-hyperaccumulation offers the potential for the development of practical phytoremediation processes. The long-term objective is to rationally design and generate plants ideally suited for phytoremediation using this unique genetic material. Initially, the strategy will focus on isolating and characterizing the key genetic information needed for expression of the metal-hyperaccumulation phenotype. Recently, histidine has been shown to play a major role in Ni hyperaccumulation. Based on this information the authors propose to investigate, at the molecular level, the role of histidine biosynthesis in Ni hyperaccumulation in Thlaspi goesingense, a Ni hyperaccumulator species.'
Date: June 1998
Creator: Salt, D.
Partner: UNT Libraries Government Documents Department

Environmentally-induced malignancies: An in vivo model to evaluate the health impact of chemicals in mixed waste. 1998 annual progress report

Description: 'Increased risk of malignancy following exposure to genotoxic agents in the environment is a major public concern. Exposure to radiation, benzene, and organic solvents is associated with an increased risk of leukemia; however the mechanism of leukemogenesis is unknown. The authors postulate that chemical(s) that increase the rate of genomic instability and induce hematotoxicity will promote accumulation of genetically-damaged hematopoietic stem cells (hsc), and thus contribute towards development of environmentally-induced hematologic malignancy. They will use molecular and cellular approaches to establish the relationship between hematoxicity, genomic instability and production of genetically aberrant hsc and progeny in mice exposed to radiation, benzene and trichloroethylene (TCE). The goals of this project are to (1) determine whether recruitment of hsc into cycle by agents that induce hematotoxicity (i.e., pancytopenia, anemia) facilitates fixation of genetic damage in hsc exposed to environmental genotoxins in vivo. (2) Determine whether environmental genotoxins with leukemogenic potential disrupt hsc genomic integrity by inactivating cell cycle checkpoints. (3) Determine whether low dose exposures to agents that induce chronic pancytopenia/anemia and/or cyclic hemopoiesis increase fixation of genetic damage in hsc. Increased understanding of the relationship between genotoxicity, hematotoxicity and genomic instability will (a) lend insight into mechanisms underlying environmental-induction of leukemic progression, (b) facilitate development of a rationale to identify chemical combinations which synergize to increase or decrease leukemogenic potential, and (c) provide opportunities to optimize approaches for biomonitoring and risk assessment. This report summarizes work after 1.5 year of a 3 year project. Accomplishments to-date include demonstration that the cycling status of hemopoietic stem cells at the time of genotoxin exposure alters the frequency and persistence of genetically damaged hemopoietic stem cells and associated progeny (Aim 1), development of assays to measure genomic instability in hemopoietic stem cells and associated progenitors (Aim 2) and quantification of genomically aberrant hsc and ...
Date: June 1, 1998
Creator: Pallavicini, M.
Partner: UNT Libraries Government Documents Department

A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

Description: 'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact ...
Date: June 1, 1998
Creator: Sen, A.
Partner: UNT Libraries Government Documents Department

An investigation of homogeneous and heterogeneous sonochemistry for the destruction of hazardous substances. Progress report, 1996--1997

Description: 'The primary objective of this research project is to acquire a deeper fundamental knowledge of acoustic cavitation and cavitation chemistry, and in doing so, to ascertain how ultrasonic irradiation can be more effectively applied to environmental problems. Four on-going projects will be described in this progress report, The first project is the destruction of carbofuran in a Near-Field Acoustical Processor (NAP), and the hydrodynamic characterization of the reactor. The second project is a comprehensive study of how ultrasonic frequency influences sonochemical reaction rates; the substrate it, the preliminary portion of this study has been hydrogen peroxide formation. The third project in progress is destruction of four polychlorinated biphenyls at 20 kHz. Work so far has been at 20 kHz, but the most significant portion of this project will involve a multi-frequency (ultrasonic frequency) study. Finally, the destruction of a pesticide, dichlorvos, during sonication at 500 kHz will be described. Preliminary work during the first year has emphasized determination of kinetics; further work (years 2--3) will be focused upon closing mass balances and identifying transformation products.'
Date: January 1, 1997
Creator: Hua, I.
Partner: UNT Libraries Government Documents Department

Development of monitoring and diagnostic methods for robots used in remediation of waste sites. 1997 annual progress report

Description: 'Safe and efficient clean up of hazardous and radioactive waste sites throughout the DOE complex will require extensive use of robots. This research effort focuses on developing Monitoring and Diagnostic (M and D) methods for robots that will provide early detection, isolation, and tracking of impending faults before they result in serious failure. The utility and effectiveness of applying M and D methods to hydraulic robots has never been proven. The present research program is utilizing seeded faults in a laboratory test rig that is representative of an existing hydraulically-powered remediation robot. This report summarizes activity conducted in the first 9 months of the project. The research team has analyzed the Rosie Mobile Worksystem as a representative hydraulic robot, developed a test rig for implanted fault testing, developed a test plan and agenda, and established methods for acquiring and analyzing the test data.'
Date: June 1, 1998
Creator: Tecza, J.
Partner: UNT Libraries Government Documents Department

Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

Description: 'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'
Date: June 1, 1998
Creator: Weathers, L.
Partner: UNT Libraries Government Documents Department

The use of dielectric and NMR measurements to determine the pore-scale location of organic. 1998 annual progress report

Description: 'The objective of the three-year research project is to investigate the effect of adsorbed organics on the dielectric and nuclear magnetic resonance (NMR) response of porous geological materials. This will allow the author to assess the use of dielectric and NMR measurements at a site to determine whether organic contaminants are present in the central volume of the pore space or are adsorbed to the solid surfaces. In addition, she proposes to use laboratory dielectric and NMR measurements to study the kinetics of the adsorption and desorption of organics. This report summarizes work completed after 20 months of a three-year project. The research involves the study of the NMR and dielectric behavior of sands with three types of solid surfaces: water-wet, where water spontaneously coats and adsorbs to the solid surfaces; hydrophobic, where water is repelled from the solid surfaces by an organosilane coating; and oil-wet, where oil coats the solid surfaces. The oil-wet case is representative of a contaminated soil, in which oil has become adsorbed to the solid surfaces.'
Date: June 1, 1998
Creator: Knight, R.
Partner: UNT Libraries Government Documents Department

Enhanced sludge processing of HLW: Hydrothermal oxidation of chromium, technetium, and complexants by nitrate. 1997 mid-year progress report

Description: 'Treatment of High Level Waste (HLW) is the second most costly problem identified by OEM. In order to minimize costs of disposal, the volume of HLW requiring vitrification and long term storage must be reduced. Methods for efficient separation of chromium from waste sludges, such as the Hanford Tank Wastes (HTW), are key to achieving this goal since the allowed level of chromium in high level glass controls waste loading. At concentrations above 0.5 to 1.0 wt.% chromium prevents proper vitrification of the waste. Chromium in sludges most likely exists as extremely insoluble oxides and minerals, with chromium in the plus III oxidation state [1]. In order to solubilize and separate it from other sludge components, Cr(III) must be oxidized to the more soluble Cr(VI) state. Efficient separation of chromium from HLW could produce an estimated savings of $3.4B[2]. Additionally, the efficient separation of technetium [3], TRU, and other metals may require the reformulation of solids to free trapped species as well as the destruction of organic complexants. New chemical processes are needed to separate chromium and other metals from tank wastes. Ideally they should not utilize additional reagents which would increase waste volume or require subsequent removal. The goal of this project is to apply hydrothermal processing for enhanced chromium separation from HLW sludges. Initially, the authors seek to develop a fundamental understanding of chromium speciation, oxidation/reduction and dissolution kinetics, reaction mechanisms, and transport properties under hydrothermal conditions in both simple and complex salt solutions. The authors also wish to evaluate the potential of hydrothermal processing for enhanced separations of technetium and TRU by examining technetium and TRU speciation at hydrothermal conditions optimal for chromium dissolution.'
Date: June 1, 1997
Creator: Buelow, S.
Partner: UNT Libraries Government Documents Department

Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. 1998 annual progress report

Description: 'This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors approach to this challenge encompasses studies of crystals and glass containing short-lived alpha- and beta-emitting actinides with electron microscopy, laser spectroscopy, and computational modeling and simulation. Much of the initial effort has focused on alpha-decay induced microscopic damage in 17-year old samples of crystalline yttrium and lutetium orthophosphates and thorium dioxide that initially contained {approximately}1% of the alpha-emitting isotope Cm-244 (18.1 y half life) or the beta-emitting isotope Bk-249 (0.88 y half life). Studies will also be conducted on borosilicate glasses that contain Cm-244 or Am-241, respectively. The goal is to gain clear insight into accumulated radiation damage and the influence of aging on such damage, which are critical factors in the long-term performance of high-level nuclear waste forms. Amorphization previously has been thought to be the most important effect of radiation damage in crystalline and ceramic materials. The studies show that for alpha-emitting actinide ions in certain crystalline phosphates, amorphization is not a significant effect of radiation damage. Instead, formation of microscopic cavities (bubbles) is an important consequence of alpha-decay events. This amorphization-resistant property makes orthophosphates a very attractive high level nuclear waste form. However, aggregation and mobilization of cavities (bubbles) might increase the leach rate of radionuclides and influence the long-term stability of the waste forms. Further research is needed before the authors can draw a final conclusion on the long-term effects of radiation damage in high level waste forms.'
Date: June 1, 1998
Creator: Liu, G.
Partner: UNT Libraries Government Documents Department

De novo design of ligands for metal separation. Annual progress report, September 15, 1996--September 14, 1997

Description: 'The specific aim of this report is to parameterize force field to reproduce geometries and relative energetics of metal-ligand complexes for cesium, strontium, plutonium, uranium, americium and other relevent alkali, transition, lanthanide and actinide metals. As an initial attempt to examine parametrization, Dr. Yasuo Takeuchi has examined parameters for iron in combination with the molecular mechanics force field. The authors realize that most of the current ad hoc methodogies used to model metal interactions in the past do not have a firm theoretical foundation for modeling the d and f orbitals. They have, therefore, started a collaboration with Prof. Anders Carlsson of the Department of Physics to provide a theoretically correct functional form for the metal force field. Prof. Carlsson has an extensive track record in the derivation of the form of angular force fields from analysis of the quantum-mechanical electronic structure. His most important related works have treated the angular forces around transition-metal (TM) atoms in an aluminum host, the angular forces in elemental bcc transition metals, and the origins of angular and torsional forces in well-bonded s-p systems. They propose to apply the basic ideas of these calculations to developing force laws for transition metal ions in biomolecules. Of particular relevance to the proposed work is his study analyzing angular forces around transition metal (TM) atoms embedded in an aluminum host. Such TM atoms have a profound effect on the host structure, often entirely reassembling the host structure in order to satisfy the angular bonding constraints around the TM atoms. For example, at a concentration of only 1 {approximately} TM to 12 {approximately} Al, the transition metals Mn, Mo, Tc, W, and Re form the Al{sup 12}W structure, in which the underlying fcc aluminum lattice is disassembled and reassembled into icosahedra which surround the transition-metal atoms. The Al{sup ...
Date: January 1, 1997
Partner: UNT Libraries Government Documents Department

Novel ceramic-polymer composite membranes for the separation of liquid waste. Annual progress report, September 15, 1996--September 14, 1997

Description: 'The project on ceramic-supported polymer membranes focuses on the development of a novel class of membranes for the separation of organics from both organic-aqueous and organic-organic mixtures, Theses membranes are fabricated by a graft polymerization process where polymer chains are grown onto the surface of a ceramic support membrane. The surface graft polymerization process, developed at UCLA, results in the formation of a thin polymer layer covalently bonded to the membrane pore surface as a layer of terminally anchored polymeric chains. Through the selection of the polymer most appropriate for the desired separation task, the graft polymerized surface layer can be synthesized to impart specific separation properties to the membrane. It is expected that this project will lead to the demonstration of a new technology for the tailor design of a new class of selective and robust ceramic-supported polymer membranes. This new approach will allow the rapid deployment of task-specific membranes for the separation of waste constituents for subsequent recovery, treatment or disposal. Progress to date includes the preparation of successful silica-polyvinylpyrrolidone (PVP) membrane for the treatment of oil-in-water emulsions and a silica-polyvinylacetate (PVAc) pervaporation membrane for the separation of organics from water. Current work is ongoing to study the performance of the pervaporation membrane for the removal of chlorinated organics from water and to develop a pervaporation membrane for organic-organic separation. In another aspect of the study, the authors are studying the hydrophilic PVP CSP membrane for oil-in-water emulsion treatment with the goal of determining the optimal membrane polymer surface structure as a function of various operating conditions (e.g., tube-side Reynolds number and transmembrane pressure), Work is also in progress to characterize the polymer layer by AFM and internal reflection FTIR, and to model the conformation of the polymer surface layer.'
Date: January 1, 1997
Creator: Cohen, Y.
Partner: UNT Libraries Government Documents Department

Investigation of microscopic radiation damage in waste forms using ODNMR and AEM techniques. 1997 annual progress report

Description: 'This project seeks to understand the microscopic effects of radiation damage in nuclear waste forms. The authors approach to this challenge encompasses studies in electron microscopy, laser spectroscopy, and computational modeling and simulation. During this first year of the project, efforts have focused on a-decay induced microscopic damage in crystalline orthophosphates (YPO{sub 4} and LuPO{sub 4}) that contain the short-lived a-emitting isotope {sup 244}Cm (t{sub 1/2} = 18.1 y). The samples that they studied were synthesized in 1980 and the initial {sup 244}Cm concentration was {approximately}1%. Studying these materials is of importance to nuclear waste management because of the opportunity to gain insight into accumulated radiation damage and the influence of aging on such damage. These factors are critical to the long-term performance of actual waste forms [1]. Lanthanide orthophosphates, including LuPO{sub 4} and YPO{sub 4}, have been suggested as waste forms for high level nuclear waste [2] and potential hosts for excess weapons plutonium [3,4]. The work is providing insight into the characteristics of these previously known radiation-resistant materials. They have observed loss of crystallinity (partial amorphization) as a direct consequence of prolonged exposure to intense alpha radiolysis in these materials. More importantly, the observation of microscopic cavities in these aged materials provides evidence of significant chemical decomposition that may be difficult to detect in the earlier stages of radiation damage. The preliminary results show that, in characterizing crystalline compounds as high level nuclear waste forms, chemical decomposition effects may be more important than lattice amorphization which has been the focus of many previous studies. More extensive studies, including in-situ analysis of the dynamics of thermal annealing of self-radiation induced amorphization and cavity formation, will be conducted on these aged {sup 244}Cm:LuPO{sub 4} and {sup 244}Cm:YPO{sub 4} samples, along with other related compounds and glasses, in next two years ...
Date: September 1, 1997
Creator: Liu, G.
Partner: UNT Libraries Government Documents Department