16 Matching Results

Search Results

Advanced search parameters have been applied.

Approaches to rid cathodic arc plasmas of macro- andnanoparticles: A review

Description: A major obstacle for the broad application of cathodic arc plasma deposition is the presence of micro- and nanoparticles in the plasma, also often referred to as 'macroparticles'. This paper reviews the formation of macroparticles at cathode spots, their interaction with the arc plasma and substrate, and macroparticle separation and removal from the plasma by various filtering methods. Nineteen variants of filters are discussed, including Aksenov's classic 90{sup o}-duct filter, filters of open architecture, and the concept of stroboscopic filtering.
Date: June 1, 1999
Creator: Anders, Andre
Partner: UNT Libraries Government Documents Department

Noninvariance of space/time-scale ranges under a Lorentztransformation and the implications for the study of relativisticinteractions

Description: The summary of this report is: (1) The range of scales {Lambda} of a system is not a Lorentz invariant and can vary greatly for some systems. (2) There exists an optimum frame which minimizes {Lambda}. (3) We demonstrated speedup of x1000 for PIC simulation of relativistic beam interacting with electron background. (4) It is not in contradiction with the conventional scientific wisdom that 'complexity' is an invariant. (5) We identified three domains of application (laser-plasma acceleration, e-cloud in HEP accelerators, free electron lasers) for which speedup ranging from 2 to 4 orders of magnitude were demonstrated on toy problems.
Date: June 1, 2007
Creator: Vay, Jean-Luc
Partner: UNT Libraries Government Documents Department

Accurate iterative analytic solution of theKapchinskij-Vladimirskij equations for the case of a matched beam

Description: The well-known Kapchinskij-Vladimirskij (KV) equations are difficult to solve in general, but the problem is simplified for the matched-beam case with sufficient symmetry. They show that the interdependence of the two KV equations is eliminated, so that only one needs to be solved--a great simplification. They present an iterative method of solution which can potentially yield any desired level of accuracy. The lowest level, the well-known smooth approximation, yields simple, explicit results with good accuracy for weak or moderate focusing fields. The next level improves the accuracy for high fields; they previously showed how to maintain a simple explicit format for the results. That paper used expansion in a small parameter to obtain the second level. The present paper, using straightforward iteration, obtains equations of first, second, and third levels of accuracy. For a periodic lattice with beam matched to lattice, they use the lattice and beam parameters as input and solve for phase advances and envelope waveforms. They find excellent agreement with numerical solutions over a wide range of beam emittances and intensities.
Date: August 6, 2006
Creator: Anderson, Oscar A.
Partner: UNT Libraries Government Documents Department

Sensitivity Analysis of the DARHT-II 2.5MV/2kA Diode

Description: This report summarizes the study of the tolerance limits on the assembly of the cathode and the Pierce electrode for the DARHT-II diode (2.5 MV, 2 kA case), performed through a series of computer simulations using the PIC code WARP [1]. We have considered sources of beam quality degradation like the errors in axial and transverse positioning, and the size of the radial gap between the cathode and the Pierce electrode (shroud). The figure of merit was chosen to be the RMS beam (edge) emittance at a distance of 1 meter from the cathode, as defined by {var_epsilon}{sub x} = 4 {beta}{gamma} {radical}(<x{sup 2}><x{prime}{sup 2}>-<xx{prime}>{sup 2}) {center_dot}. The analysis shows that to position the cathode at the correct axial and transverse location is more important than the size of the radial gap.
Date: December 22, 2006
Creator: Henestroza, Enrique
Partner: UNT Libraries Government Documents Department

On the non-invariance of space and time scale ranges under Lorentztransformation, and its implications for the study of relativisticinteractions

Description: We present an analysis which shows that the ranges of space and time scales spanned by a system are not invariant under the Lorentz transformation. This implies the existence of a frame of reference which minimizes an aggregate measure of the range of space and time scales. Such a frame is derived for example cases: free electron laser, laser-plasma accelerator, and particle beam interacting with electron clouds. Implications for experimental, theoretical and numerical studies are discussed. The most immediate relevance is the reduction by orders of magnitude in computer simulation run times for such systems.
Date: January 16, 2007
Creator: Vay, J.-L.
Partner: UNT Libraries Government Documents Department

Integration of Ion Implantation with Scanning ProbeAlignment

Description: We describe a scanning probe instrument which integrates ion beams with imaging and alignment functions of a piezo resistive scanning probe in high vacuum. Energetic ions (1 to a few hundred keV) are transported through holes in scanning probe tips [1]. Holes and imaging tips are formed by Focused Ion Beam (FIB) drilling and ion beam assisted thin film deposition. Transport of single ions can be monitored through detection of secondary electrons from highly charged dopant ions (e. g., Bi{sup 45+}) enabling single atom device formation. Fig. 1 shows SEM images of a scanning probe tip formed by ion beam assisted Pt deposition in a dual beam FIB. Ion beam collimating apertures are drilled through the silicon cantilever with a thickness of 5 {micro}m. Aspect ratio limitations preclude the direct drilling of holes with diameters well below 1 {micro}m, and smaller hole diameters are achieved through local thin film deposition [2]. The hole in Fig. 1 was reduced from 2 {micro}m to a residual opening of about 300 nm. Fig. 2 shows an in situ scanning probe image of an alignment dot pattern taken with the tip from Fig. 1. Transport of energetic ions through the aperture in the scanning probe tip allows formation of arbitrary implant patterns. In the example shown in Fig. 2 (right), a 30 nm thick PMMA resist layer on silicon was exposed to 7 keV Ar{sup 2+} ions with an equivalent dose of 10{sup 14} ions/cm{sup 2} to form the LBL logo. An exciting goal of this approach is the placement of single dopant ions into precise locations for integration of single atom devices, such as donor spin based quantum computers [3, 4]. In Fig. 3, we show a section of a micron size dot area exposed to a low dose (10{sup 11}/cm{sup 2}) of ...
Date: March 1, 2005
Creator: Persaud, A.; Rangelow, I.W. & Schenkel, T.
Partner: UNT Libraries Government Documents Department

Time-resolved measurements of desorbed gas during 1-MeV K+ pulsedbeam deposition in a stainless steel target

Description: Measurements were made of the density, species and velocity of the desorbed gas cloud on intense K{sup +} beam bombardment of a stainless steel target. RGA measurements indicate that the gas cloud consists of predominantly H{sub 2}. Energy analyzer measurements of doubly-ionized beam ions show that the ratio of hydrogen gas production to beam density was approximately 3000 at normal incidence. Optical measurements of the evolution of the gas cloud during the beam pulse show a distribution with an average expansion velocity of about 0.5 mm/{micro}s. Comparison is made with a simple model of the gas cloud behavior.
Date: January 1, 2007
Creator: Bieniosek, F.M.; Prost, L.R.; Seidl, P.A.; Molvik, A.W. & KireeffCovo, M.
Partner: UNT Libraries Government Documents Department

Particle-in-Cell Calculationsof the Electron Cloud in the ILCPositron Damping Ring Wigglers

Description: The self-consistent code suite WARP-POSINST is being used to study electron cloud effects in the ILC positron damping ring wiggler. WARP is a parallelized, 3D particle-in-cell code which is fully self-consistent for all species. The POSINST models for the production of photoelectrons and secondary electrons are used to calculate electron creation. Mesh refinement and a moving reference frame for the calculation will be used to reduce the computer time needed by several orders of magnitude. We present preliminary results for cloud buildup showing 3D electron effects at the nulls of the vertical wiggler field. First results from a benchmark of WARP-POSINST vs. POSINST are also discussed.
Date: July 1, 2007
Creator: Celata, C.M.; Furman, M.A.; Vay, J.-L. & Grote, D.P.
Partner: UNT Libraries Government Documents Department

Simulation studies of non-neutral plasma equilibria in anelectrostatic trap with magnetic mirror

Description: The equilibrium of an infinitely long, strongly magnetized, non-neutral plasma confined in a Penning-Malmberg trap with an additional mirror coil has been solved analytically [J. Fajans, Phys. Plasmas 10, 1209 (2003)] and shown to exhibit unusual features. Particles not only reflect near the mirror in the low field region, but also may be weakly trapped in part of in the high field region. The plasma satisfies a Boltzmann distribution along field lines; however, the density and the potential vary along field lines. Some other simplifying assumptions were employed in order to analytically characterize the equilibrium; for example the interface region between the low and high field regions was not considered. The earlier results are confirmed in the present study, where two-dimensional particle-in-cell simulations are performed with the Warp code in a more realistic configuration with an arbitrary (but physical) density profile, realistic trap geometry and magnetic field. A range of temperatures and radial plasma sizes are considered. Particle tracking is used to identify populations of trapped and untrapped particles. The present study also shows that it is possible to obtain local equilibria of non-neutral plasmas using a collisionless PIC code, by a scheme that uses the inherent numerical collisionality as a proxy for physical collisions.
Date: June 1, 2006
Creator: Gomberoff, K.; Fajans, J.; Wurtele, J.; Friedman, A.; Grote,D.P.; Cohen, R.H. et al.
Partner: UNT Libraries Government Documents Department

Simulating Electron Clouds in High-Current Ion Accelerators withSolenoid Focusing

Description: Contamination from electrons is a concern for the solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons are produced directly by beam ions hitting lattice elements and intercepting diagnostics, or indirectly by ionization of desorbed neutral gas, and they are believed responsible for time dependence of the beam radius, emittance, and focal distance seen on the Solenoid Transport Experiment (STX) at Lawrence Berkeley National Laboratory. The electrostatic particle-in-cell code WARP has been upgraded to included the physics needed to simulate electron-cloud phenomena. We present preliminary self-consistent simulations of STX experiments suggesting that the observed time dependence of the beam stems from a complicated interaction of beam ions, desorbed neutrals, and electrons.
Date: September 20, 2006
Creator: Sharp, W.M.; Grote, D.P.; Cohen, R.H.; Friedman, A.; Vay, J.-L.; Seidl, P.A. et al.
Partner: UNT Libraries Government Documents Department