22 Matching Results

Search Results

Advanced search parameters have been applied.

Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

Description: Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal ...
Date: December 19, 2006
Creator: Chan, Emory Ming-Yue
Partner: UNT Libraries Government Documents Department

Controlled Assembly of Hybrid Bulk-Heterojunction Solar Cells bySequential Deposition

Description: This work presents a technique to create ordered and easily characterized hybrid nanocrystal-polymer composites by sequential deposition of tetrapod-shaped cadmium telluride (CdTe) nanocrystals and poly(3-hexlythiophene). With controlled fabrication and composite morphology, these devices offer several advantages over traditional codeposited hybrid cells, and provide a model system for detailed investigation into the operation of bulk-heterojunction cells.
Date: August 13, 2006
Creator: Gur, Ilan; Fromer, Neil A. & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Real time correlation function in a single phase spaceintegral--beyond the linearized semiclassical initial valuerepresentation

Description: It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the 2nd order WD based on 'Winger trajectories', and the full Donoso-Martens dynamics (full DMD) and the 2nd order DMD based on 'Donoso-Martens trajectories'--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of these four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (non-linear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
Date: July 10, 2007
Creator: Liu, Jian & Miller, William H.
Partner: UNT Libraries Government Documents Department

Semiclassical (SC) Description of Electronically Non-AdiabaticDynamics via the Initial Value Representation (IVR)

Description: The initial value representation (IVR) of semiclassical (SC) theory is used in conjunction with the Meyer-Miller/Stock-Thoss description of electronic degrees of freedom in order to treat electronically non-adiabatic processes. It is emphasized that the classical equations of motion for the nuclear and electronic degrees of freedom that emerge in this description are precisely the Ehrenfest equations of motion (the force on the nuclei is the force averaged over the electronic wavefunction), but that the trajectories given by these equations of motion do not have the usual shortcomings of the traditional Ehrenfest model when they are used within the SC-IVR framework. For example, in the traditional Ehrenfest model (a mixed quantum-classical approach) the nuclear motion emerges from a non-adiabatic encounter on an average potential energy surface (a weighted average according to the population in the various electronic states), while the SC-IVR describes the correct correlation between electronic and nuclear dynamics, i.e., the nuclear motion is on one potential energy surface or the other depending on the electronic state. Calculations using forward-backward versions of SC-IVR theory (FB-IVR) are presented to illustrate this behavior. An even more approximate version of the SC-IVR, the linearized approximation (LSC-IVR), is slightly better than the traditional Ehrenfest model, but since it cannot describe quantum coherence effects, the LSC-IVR is also not able to describe the correct correlation between nuclear and electronic dynamics.
Date: June 22, 2007
Creator: Ananth, V.; Venkataraman, C. & Miller, W.H.
Partner: UNT Libraries Government Documents Department

In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

Description: We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.
Date: June 29, 2007
Creator: Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell & Wenk,Hans-Rudolf
Partner: UNT Libraries Government Documents Department

Hybrid Solar Cells with Prescribed Nanoscale Morphologies Based onHyperbranched Semiconductor Nanocrystals

Description: In recent years, the search to develop large-area solar cells at low cost has led to research on photovoltaic (PV) systems based on nanocomposites containing conjugated polymers. These composite films can be synthesized and processed at lower costs and with greater versatility than the solid state inorganic semiconductors that comprise today's solar cells. However, the best nanocomposite solar cells are based on a complex architecture, consisting of a fine blend of interpenetrating and percolating donor and acceptor materials. Cell performance is strongly dependent on blend morphology, and solution-based fabrication techniques often result in uncontrolled and irreproducible blends, whose composite morphologies are difficult to characterize accurately. Here we incorporate 3-dimensional hyper-branched colloidal semiconductor nanocrystals in solution-processed hybrid organic-inorganic solar cells, yielding reproducible and controlled nanoscale morphology.
Date: September 9, 2006
Creator: Gur, Ilan; Fromer, Neil A.; Chen, Chih-Ping; Kanaras, AntoniosG. & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Using the thermal Gaussian approximation approximation for theBoltzmann Operator in Semiclassical Initial Value Time CorrelationFunctions

Description: The thermal Gaussian approximation (TGA) recently developed by Mandelshtam et al has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-{beta}H) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the 'forward-backward semiclassical dynamics' (FBSD) approximation developed by Makri et al. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.
Date: September 6, 2006
Creator: Liu, Jian & Miller, William H.
Partner: UNT Libraries Government Documents Department

Resonant soft X-ray emission spectroscopy of liquids

Description: We present now a possible way to carry out soft-x-rayfluorescence spectroscopy of liquids. The liquid cell has a window toattain compatibility with UHV conditions of the spectrometer andbeamline, The synchrotron radiation enters the liquid cell through a 100nm-thick silicon nitride window and the emitted xrays exit through thesame window. This allows in particular liquid solid interfaces to bestudied. Such a liquid cell has been used to study the electronicstructure of a variety of systems ranging from water solutions ofinorganic salts and inertial drugs to nano materials and actinidecompounds in their wet conditions.
Date: October 27, 2004
Creator: Guo, J.-H.; Augustsson, A.; Englund, C.-J. & Nordgren, J.
Partner: UNT Libraries Government Documents Department

Molecular beam epitaxy of InN dots on nitrided sapphire

Description: A series of self-assembled InN dots are grown by radio frequency (RF) plasma-assisted molecular beam epitaxy (MBE) directly on nitrided sapphire. Initial nitridation of the sapphire substrates at 900 C results in the formation of a rough AlN surface layer, which acts as a very thin buffer layer and facilitates the nucleation of the InN dots according to the Stranski-Krastanow growth mode, with a wetting layer of {approx}0.9 nm. Atomic force microscopy (AFM) reveals that well-confined InN nanoislands with the greatest height/width at half-height ratio of 0.64 can be grown at 460 C. Lower substrate temperatures result in a reduced aspect ratio due to a lower diffusion rate of the In adatoms, whereas the thermal decomposition of InN truncates the growth at T>500 C. The densities of separated dots vary between 1.0 x 10{sup 10} cm{sup -2} and 2.5 x 10{sup 10} cm{sup -2} depending on the growth time. Optical response of the InN dots under laser excitation is studied with apertureless near-field scanning optical microscopy and photoluminescence spectroscopy, although no photoluminescence is observed from these samples. In view of the desirable implementation of InN nanostructures into photonic devices, the results indicate that nitrided sapphire is a suitable substrate for growing self-assembled InN nanodots.
Date: April 20, 2007
Creator: Romanyuk, Yaroslav E.; Dengel, Radu-Gabriel; Stebounova, LarissaV. & Leone, Stephen R.
Partner: UNT Libraries Government Documents Department

Ultrabroadband 50-130 THz pulses generated via phase-matcheddifference frequency mixing in LiIO3

Description: We report the generation of ultrabroadband pulses spanningthe 50-130 THz frequency range via phase-matched difference frequencymixing within the broad spectrum of sub-10 fs pulses in LiIO_3. Modelcalculations reproduce the octave-spanning spectra and predict few-cycleTHz pulse durations less than 20~;fs. The applicability of this scheme isdemonstrated with 9-fs pulses from a Ti:sapphire oscillator and with 7-fsamplified pulses from a hollow fiber compressor as pumpsources.
Date: October 10, 2006
Creator: Zentgraf, Thomas; Huber, Rupert; Nielsen, Nils C.; Chemla, DanielS. & Kaindl, Robert A.
Partner: UNT Libraries Government Documents Department

Multi-rate flowing Wellbore electric conductivity logging method

Description: The flowing wellbore electric conductivity logging method involves the replacement of wellbore water by de-ionized or constant-salinity water, followed by constant pumping with rate Q, during which a series of fluid electric conductivity logs are taken. The logs can be analyzed to identify depth locations of inflow, and evaluate the transmissivity and electric conductivity (salinity) of the fluid at each inflow point. The present paper proposes the use of the method with two or more pumping rates. In particular it is recommended that the method be applied three times with pumping rates Q, Q /2, and 2Q. Then a combined analysis of the multi-rate data allows an efficient means of determining transmissivity and salinity values of all inflow points along a well with a confidence measure, as well as their inherent or far-field pressure heads. The method is illustrated by a practical example.
Date: April 22, 2003
Creator: Tsang, Chin-Fu & Doughty, Christine
Partner: UNT Libraries Government Documents Department

Ambient to high-temperature fracture toughness and cyclic fatigue behavior in Al-containing silicon carbide ceramics

Description: A series of in situ toughened, A1, B and C containing, silicon carbide ceramics (ABC-SiC) has been examined with A1 contents varying from 3 to 7 wt percent. With increasing A1 additions, the grain morphology in the as-processed microstructures varied from elongated to bimodal to equiaxed, with a change in the nature of the grain-boundary film from amorphous to partially crystalline to fully crystalline.
Date: August 1, 2003
Creator: Yuan, R.; Kruzic, J.J.; Zhang, X.F.; De Jonghe, L.C. & Ritchie, R.O.
Partner: UNT Libraries Government Documents Department

Millisecond Kinetics of Nanocrystal Cation Exchange UsingMicrofluidic X-ray Absorption Spectroscopy

Description: We describe the use of a flow-focusing microfluidic reactorto measure the kinetics of theCdSe-to-Ag2Se nanocrystal cation exchangereaction using micro-X-ray absorption spectroscopy (mu XAS). The smallmicroreactor dimensions facilitate the millisecond mixing of CdSenanocrystal and Ag+ reactant solutions, and the transposition of thereaction time onto spatial coordinates enables the in situ observation ofthe millisecond reaction with mu XAS. XAS spectra show the progression ofCdSe nanocrystals to Ag2Se over the course of 100 ms without the presenceof long-lived intermediates. These results, along with supporting stoppedflow absorption experiments, suggest that this nanocrystal cationexchange reaction is highly efficient and provide insight into how thereaction progresses in individual particles. This experiment illustratesthe value and potential of in situ microfluidic X-ray synchrotrontechniques for detailed studies of the millisecond structuraltransformations of nanoparticles and other solution-phase reactions inwhich diffusive mixing initiates changes in local bond structures oroxidation states.
Date: May 7, 2007
Creator: Chan, Emory M.; Marcus, Matthew A.; Fakra, Sirine; Elnaggar,Mariam S.; Mathies, Richard A. & Alivisatos, A. Paul
Partner: UNT Libraries Government Documents Department

Sub-Angstrom electron microscopy for sub-Angstrom nano-metrology

Description: The revolution in nanoscale science and technology requires instrumentation for observation and metrology - we must be able to see and measure what we build. Because nano-devices operate on the level of a few molecules, or even a few atoms, accurate atomic-scale imaging is called for. High-resolution aberration-corrected electron microscopes (both TEM and STEM) can provide valuable measurements at the sub-Angstrom level. Over the next decade, extension of TEM and STEM resolutions to half-Angstrom levels by next-generation aberration-corrected electron microscopes will advance the capabilities of these essential tools for atomic-scale structural characterization. Because improvements in resolution allow for separation of atom columns in many more projection directions, these microscopes will provide much improved three-dimensional characterization of the shape and internal structure of nanodevices and catalyst nanoparticles (perhaps even true 3-D imaging), and hence provide essential feedback in the nano-theory/construction/measurement loop.
Date: January 18, 2004
Creator: O'Keefe, Michael A. & Allard, Lawrence F.
Partner: UNT Libraries Government Documents Department

Atomistic simulations of fcc Pt{sub 75}Ni{sub 25} and Pt{sub 75}Re{sub 25} cubo-octahedral nanoparticles

Description: We have developed interatomic potentials for Pt-Ni and Pt-Re alloys within the modified embedded atom method (MEAM). Furthermore, we applied these potentials to study the equilibrium structures of Pt75Ni25 and Pt75Re25 nanoparticles at T=600 K using the Monte Carlo method. In this work, the nanoparticles are assumed to have disordered fcc cubo-octahedral shapes (terminated by {l_brace}111{r_brace} and {l_brace}100{r_brace} facets) and contain from 586 to 4033 atoms (corresponding to a diameter from 2.5 to 5 nm). It was found that, due to surface segregation, (1) the Pt75Ni25 nanoparticles form a surface-sandwich structure: the Pt atoms are enriched in the outermost and third atomic shells, while the Ni atoms are enriched in the second atomic shell; (2) the equilibrium Pt75Re25 nanoparticles adopt a core-shell structure: a Pt-enriched shell surrounding a Pt-deficient core.
Date: March 30, 2004
Creator: Wang, Guofeng; Van Hove, M.A.; Ross, P.N. & Baskes, M.I.
Partner: UNT Libraries Government Documents Department

Fully differential cross sections for photo-double-ionization of D{sub 2}

Description: We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo-double ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis.
Date: July 15, 2003
Creator: Weber, Th.; Czasch, A.; Jagutzki, O.; Mueller, A.; Mergel, V.; Kheifets, A. et al.
Partner: UNT Libraries Government Documents Department