34 Matching Results

Search Results

Advanced search parameters have been applied.

Band anticrossing effects in highly mismatched semiconductor alloys

Description: The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, ...
Date: September 9, 2002
Creator: Wu, Junqiao
Partner: UNT Libraries Government Documents Department

Band anticrossing in highly mismatched semiconductor alloys

Description: The basic theoretical aspects of the band anticrossing effects in highly electronegativity-mismatched semiconductor alloys are reviewed. The many-impurity Anderson model treated in the coherent potential approximation is applied to the semiconductor alloys, in which metallic anion atoms are partially substituted by atoms of a highly electronegative element. Analytical solutions for the Green's function describe dispersion relations and state broadening effects for the restructured conduction band. The solutions are identical to those obtained from the physically intuitive and widely used two-level band anticrossing model. It is shown that the model explains key experimental observations including the unusual composition and pressure dependence of the interband optical transitions and the large enhancement of the electron effective mass.
Date: July 26, 2002
Creator: Walukiewicz, W.
Partner: UNT Libraries Government Documents Department

Microstructural evolution of eutectic Au-Sn solder joints

Description: Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.
Date: May 31, 2002
Creator: Song, Ho Geon
Partner: UNT Libraries Government Documents Department

Radiative transitions in InGaN quantum-well structures

Description: InGaN based light emitting devices demonstrate excellent luminescence properties and have great potential in lighting applications. Though these devices are already being produced on an industrial scale, the nature of their radiative transition is still not well understood. In particular, the role of the huge (>1MV/cm), built-in electric field in these transitions is still under debate. The luminescence characteristics of InGaN quantum well structures were investigated as a function of excitation power, temperature, and biaxial strain, with an intent of discerning the effects of the electric field and inhomogeneous indium distribution in the QW on the radiative transition. It was found that the luminescence energy did not scale only with the indium concentration but that the QW thickness must also be taken into account. The thickness affects the transition energy due to quantum confinement and carrier separation across a potential drop in the QW. The luminescence peak width was shown to increase with increased indium fraction, due to increased indium inhomogeneity. The carrier lifetime increased exponentially with QW thickness and luminescence wavelength, due to increased carrier separation. Measuring the luminescence energy and carrier lifetime as a function of excitation density showed that the electric field can be screened by strong excitation and, as a consequence, the carrier separation reduced. The temperature dependence of the luminescence showed evidence for bandtails in the density of states, a phenomenon that has been previously related to transition in indium-rich nano-clusters, yet could be accounted for by fluctuations in other parameters that affect the transition energy. Room temperature luminescence efficiency was shown to weakly decrease with increased QW thickness. The application of biaxial strain resulted in either a redshift or blueshift of the luminescence, depending on the sample. The direction and magnitude of the shift in luminescence energy is interpreted in terms of a newly ...
Date: June 27, 2002
Creator: Shapiro, Noad Asaf
Partner: UNT Libraries Government Documents Department

Isotopically controlled semiconductors

Description: Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.
Date: December 21, 2001
Creator: Haller, Eugene E.
Partner: UNT Libraries Government Documents Department

Bulk band gaps in divalent hexaborides: A soft x-ray emission study

Description: Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band.
Date: October 3, 2001
Creator: Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D. & Fisk, Zachary
Partner: UNT Libraries Government Documents Department

Liquid-film assisted formation of alumina/niobium interfaces

Description: Alumina has been joined at 1400 degrees C using niobium-based interlayers. Two different joining approaches were compared: solid-state diffusion bonding using a niobium foil as an interlayer, and liquid-film assisted bonding using a multilayer copper/niobium/copper interlayer. In both cases, a 127-(mu)m thick niobium foil was used; =1.4-(mu)m or =3-(mu)m thick copper films flanked the niobium. Room-temperature four-point bend tests showed that the introduction of a copper film had a significant beneficial effect on the average strength and the strength distribution. Experiments using sapphire substrates indicated that during bonding the initially continuous copper film evolved into isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. Film breakup appeared to initiate at either niobium grain boundary ridges, or at asperities or irregularities on the niobium surface that caused localized contact with the sapphire.
Date: June 16, 2002
Creator: Sugar, Joshua D.; McKeown, Joseph T.; Marks, Robert A. & Glaeser, Andreas M.
Partner: UNT Libraries Government Documents Department

Differences and similarities between structural properties of GaN grown by different growth methods

Description: In this paper defects formed in GaN grown by different methods are reviewed. The crystal growth direction and growth rate play important roles. For bulk crystals grown under high pressure the highest growth rates are for planes perpendicular to the c-axis. Only planar defects formed on c-planes are observed in these crystals. There are no threading dislocations or nanotubes in the c-direction. However, polarity of the growth direction plays a role in the surface roughness and the distribution of planar defects. For growth of homo-epitaxial and hetero-epitaxial layers the growth is forced to take place in the much slower c-direction. As a result defects related to the purity of constituents used for growth are formed such as nanotubes and pinholes. In addition threading dislocations and dislocations that accommodate lattice and thermal expansion mismatch are formed.
Date: August 1, 2002
Creator: Liliental-Weber, Z.; Jasinski, J. & Washburn, J.
Partner: UNT Libraries Government Documents Department

Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

Description: In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.
Date: July 31, 2002
Creator: Liliental-Weber, Z.; Jasinski, J. & Washburn, J.
Partner: UNT Libraries Government Documents Department

Reactive spreading in ceramic/metal systems

Description: Reactive spreading, in which a chemically active element is added to promote wetting of noble metals on nonmetallic materials, is evaluated mechanistically. Theories for the energetics and kinetics of the steps involved in spreading are outlined to permit comparison to the steps in the compound formation that typically accompanies reactive wetting. These include: fluid flow, active metal adsorption, including nonequilibrium effects, and triple line ridging. They can all be faster than compound nucleation under certain conditions. This analysis plus assessment of recently reported experiments on metal/ceramic systems lead to a focus on those conditions under which spreading proceeds ahead of the actual formation of a new phase at the interface. This scenario may be more typical than commonly believed, and perhaps is the most effective situation leading to enhanced spreading. A rationale for the slow spreading rates plus the pervasive variability and hysteresis observed during high temperature wetting also emerges.
Date: November 6, 2000
Creator: Saiz, Eduardo; Cannon, Rowland M. & Tomsia, Antoni P.
Partner: UNT Libraries Government Documents Department

Screw dislocations in GaN

Description: GaN has received much attention over the past few years because of several new applications, including light emitting diodes, blue laser diodes and high-power microwave transistors. One of the biggest problems is a high density of structural defects, mostly dislocations, due to a lack of a suitable lattice-matched substrate since bulk GaN is difficult to grow in large sizes. Transmission Electron Microscopy (TEM) has been applied to study defects in plan-view and cross-sections on samples prepared by conventional techniques such as mechanical thinning and precision ion milling. The density of dislocations close to the sample surface of a 1 mm-thick HVPE sample was in the range of 3x109 cm-2. All three types of dislocations were present in these samples, and almost 50 percent were screw dislocations. Our studies suggest that the core structure of screw dislocations in the same material might differ when the material is grown by different methods.
Date: February 15, 2002
Creator: Liliental-Weber, Zuzanna; Jasinski, Jacek B.; Washburn, Jack & O'Keefe, Michael A.
Partner: UNT Libraries Government Documents Department

Temperature dependent 5f-states in URu2Si2

Description: A dramatic temperature dependent enhancement of U 5f spectral weight at EF is observed in angle-resolved photoemission measurements of URu{sub 2}Si{sub 2} at the center of an X-point hole-pocket. Comparison of this temperature dependent behavior for excitation both at and below the U 5d->5f resonant threshold is presented.
Date: November 1, 2001
Creator: Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W. & Sarrao, John L.
Partner: UNT Libraries Government Documents Department

Synchrotron infrared spectromicroscopy as a novel bioanalytical microprobe for individual living cells: Cytotoxicity considerations

Description: Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging analytical tool capable of monitoring the biochemistry within an individual living mammalian cell in real time. This unique technique provides infrared (IR)spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Mid-IR photons are too low in energy (0.05-0.5 eV) to either break bonds or to cause ionization, and the synchrotron IR beam has been shown to produce minimal sample heating. However, an important question remains, ''Does the intense synchrotron beam induce any cytotoxic effects in living cells?'' In this work, we present the results from a series of standard biological assays to evaluate any short-and/or long-term effects on cells exposed to the synchrotron radiation-based infrared (SR-IR) beam. Cell viability was tested using alcian blue dye-exclusion and colony formation assays. Cell-cycle progression was tested with bromodeoxyuridine (BrdU) uptake during DNA synthesis. Cell metabolism was tested using an 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. All control, 5-, 10-, and 20-minute SR-IR exposure tests (267 total and over 1000 controls) show no evidence of cytotoxic effects. Concurrent infrared spectra obtained with each experiment confirm no detectable chemistry changes between control and exposed cells.
Date: December 12, 2001
Creator: Holman, Hoi-Ying N.; Bjornstad, Kathleen A.; McNamara, Morgan P.; Martin, Michael C.; McKinney, Wayne R. & Blakely, Eleanor A.
Partner: UNT Libraries Government Documents Department

Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies

Description: The role of humic acid (HA) in the biodegradation of toxic polycyclic aromatic hydrocarbons (PAHs) has been the subject of controversy, particularly in unsaturated environments. By utilizing an infrared spectromicroscope and a very bright, nondestructive synchrotron photon source, we monitored in situ and, over time, the influence of HA on the progression of degradation of pyrene (a model PAH) by a bacterial colony on a magnetite surface. Our results indicate that HA dramatically shortens the onset time for PAH biodegradation from 168 to 2 h. In the absence of HA, it takes the bacteria about 168 h to produce sufficient glycolipids to solubilize pyrene and make it bioavailable for biodegradation. These results will have large implications for the bioremediation of contaminated soils.
Date: September 26, 2001
Creator: Holman, Hoi-Ying N.; Nieman, Karl; Sorensen, Darwin L.; Miller, Charles D.; Martin, Michael C.; Borch, Thomas et al.
Partner: UNT Libraries Government Documents Department

Very high power THz radiation at Jefferson Lab

Description: We report the production of high power (20 watts average, {approx};1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source with one based on ultrafast laser techniques, and in fact the radiation has qualities closely analogous to that produced by such sources, namely that it is spatially coherent, and comprises short duration pulses with transform-limited spectral content. In contrast to conventional THz radiation, however, the intensity is many orders of magnitude greater due to the relativistic enhancement.
Date: March 31, 2002
Creator: Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R. & Williams, G.P.
Partner: UNT Libraries Government Documents Department

Band anticrossing in highly mismatched group II-VI semiconductor alloys

Description: We have successfully synthesized highly mismatched Cd{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys by high dose implantation of O ions into Cd{sub 1-y}Mn{sub y}Te crystals. In crystals with y > 0.02, incorporation of O causes a large decrease in the band gap. The band gap reduction increases with y; the largest value observed is 190 meV in O-implanted Cd{sub 0.38}Mn{sub 0.62}Te. The results are consistent with the band anticrossing model which predicts that a repulsive interaction between localized states of O located above the conduction band edge and the extended states of the conduction band causes the band gap reduction. A best fit of the measured band gap energies of the O ion synthesized Cd{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys using the band anticrossing model for y < 0.55 suggests an activation efficiency of only {approx}5% for implanted O in Cd{sub 1-y}Mn{sub y}Te.
Date: October 3, 2001
Creator: Yu, K.M.; Wu, J.; Walukiewicz, W.; Beeman, J.W.; Ager, J.W.; Haller, E.E. et al.
Partner: UNT Libraries Government Documents Department