2 Matching Results

Search Results

Advanced search parameters have been applied.

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas (Rev. 1)

Description: A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; the design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A ...
Date: January 3, 2006
Creator: Ryutov, D D; Bionta, R M; McKernan, M A; Shen, S & Trent, J W
Partner: UNT Libraries Government Documents Department

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

Description: A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen et al [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; the design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the ...
Date: December 19, 2005
Creator: Ryutov, D D; Bionta, R M; McKernan, M A; Shen, S & Trent, J W
Partner: UNT Libraries Government Documents Department