21 Matching Results

Search Results

Advanced search parameters have been applied.

HOPSPACK 2.0 user manual.

Description: HOPSPACK (Hybrid Optimization Parallel Search PACKage) solves derivative-free optimization problems using an open source, C++ software framework. The framework enables parallel operation using MPI or multithreading, and allows multiple solvers to run simultaneously and interact to find solution points. HOPSPACK comes with an asynchronous pattern search solver that handles general optimization problems with linear and nonlinear constraints, and continuous and integer-valued variables. This user manual explains how to install and use HOPSPACK to solve problems, and how to create custom solvers within the framework.
Date: September 1, 2009
Creator: Plantenga, Todd D.
Partner: UNT Libraries Government Documents Department

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

Description: The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning ...
Date: June 12, 2009
Creator: Hillson, Todd D.
Partner: UNT Libraries Government Documents Department

Parallel Computation Chemistry Using Constraints: Final Report, LDRD 97-0301, Case 3504140000

Description: Computer modeling to estimate material properties, design chem/bio sensors, and evaluate protein-protein interactions all require solving force field equations for molecular structures that contain tens of thousands of covalently connected atoms. Potential energy minimization is a key step in the calculation, but stiff covalent bonding forces make optimization difficult and expensive. This two-year LDRD developed two classes of advanced minimization algorithms that were specialized for chemistry applications and distributed computing machines. The project led to two successful algorithms that were implemented in three Sandia computational chemistry codes to support various users.
Date: November 1, 1998
Creator: Plantenga, Todd D.
Partner: UNT Libraries Government Documents Department

C%2B%2B tensor toolbox user manual.

Description: The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.
Date: April 1, 2012
Creator: Plantenga, Todd D. & Kolda, Tamara Gibson
Partner: UNT Libraries Government Documents Department

A 3D Model for Ion Beam Formation and Transport Simulation

Description: In this paper, we present a three-dimensional model forself-consistently modeling ion beam formation from plasma ion sources andtransporting in low energy beam transport systems. A multi-sectionoverlapped computational domain has been used to break the originaltransport system into a number of weakly coupled subsystems. Within eachsubsystem, macro-particle tracking is used to obtain the charge densitydistribution in this subdomain. The three-dimensional Poisson equation issolved within the subdomain after each particle tracking to obtain theself-consistent space-charge forces and the particle tracking is repeateduntil the solution converges. Two new Poisson solvers based on acombination of the spectral method and the finite difference multigridmethod have been developed to solve the Poisson equation in cylindricalcoordinates for the straight beam transport section and in Frenet-Serretcoordinates for the bending magnet section. This model can have importantapplication in design and optimization of the low energy beam line opticsof the proposed Rare Isotope Accelerator (RIA) front end.
Date: February 7, 2006
Creator: Qiang, J.; Todd, D. & Leitner, D.
Partner: UNT Libraries Government Documents Department

Field performance of the Walker Branch throughfall displacement experiment

Description: The authors are conducting a large-scale manipulative field experiments in an upland oak forest on the Walker Branch Watershed in eastern Tennessee USA to identify important ecosystem responses that might result from future precipitation changes. The manipulation of soil moisture is being implemented by a gravity-driven transfer of throughfall precipitation from one treatment plot to another. Throughfall is intercepted in {approx} 2,000 subcanopy troughs (0.3 x 5 m) suspended above the forest floor of the dry plots ({approx} 33% of the ground area is covered) and transferred by gravity flow across an ambient plot for subsequent distribution onto the wet treatment plot. Percent soil water is being monitored with time domain reflectometers at 310 sampling locations across the site. The experimental system is able to produce statistically significant differences in soil water content in years having both extremely dry and extremely wet conditions. Furthermore, comparisons of pre- and post-installation soil temperature measurements have documented the ability of the experimental design to produce these changes without changing the microclimate of the forest understory.
Date: October 6, 1994
Creator: Hanson, P. J.; Todd, D. E.; Edwards, N. T. & Huston, M. A.
Partner: UNT Libraries Government Documents Department

Fast Energy Minimization of large Polymers Using Constrained Optimization

Description: A new computational technique is described that uses distance constraints to calculate empirical potential energy minima of partially rigid molecules. A constrained minimuzation algorithm that works entirely in Cartesian coordinates is used. The algorithm does not obey the constraints until convergence, a feature that reduces ill-conditioning and allows constrained local minima to be computed more quickly than unconstrained minima. Computational speedup exceeds the 3-fold factor commonly obtained in constained molecular dynamics simulations, where the constraints must be strictly obeyed at all times.
Date: October 1, 1998
Creator: Plantenga, Todd D.
Partner: UNT Libraries Government Documents Department

A Parallel 3d Model for The Multi-Species Low Energy BeamTransport System of the RIA Prototype ECR Ion Source Venus

Description: The driver linac of the proposed Rare Isotope Accelerator (RIA) requires a great variety of high intensity, high charge state ion beams. In order to design and to optimize the low energy beamline optics of the RIA front end,we have developed a new parallel three-dimensional model to simulate the low energy, multi-species ion beam formation and transport from the ECR ion source extraction region to the focal plane of the analyzing magnet. A multisection overlapped computational domain has been used to break the original transport system into a number of each subsystem, macro-particle tracking is used to obtain the charge density distribution in this subdomain. The three-dimensional Poisson equation is solved within the subdomain and particle tracking is repeated until the solution converges. Two new Poisson solvers based on a combination of the spectral method and the multigrid method have been developed to solve the Poisson equation in cylindrical coordinates for the beam extraction region and in the Frenet-Serret coordinates for the bending magnet region. Some test examples and initial applications will also be presented.
Date: May 16, 2005
Creator: Qiang, J.; Leitner, D. & Todd, D.
Partner: UNT Libraries Government Documents Department

Flow Tests of an NACA-Designed Supercharger Inlet Elbow and the Effects of Various Components on the Flow Characteristics at the Elbow Outlet

Description: Note presenting an investigation on a supercharger inlet elbow designed to have a uniform velocity distribution at the outlet with a minimum pressure loss through the bend. The effects of a vane, an impeller-shaft housing, and the combination of the two on the outlet-velocity distribution and total pressure drop through the elbow were determined.
Date: October 1946
Creator: Guentert, D. C.; Todd, D. J. & Simmons, W. P., Jr.
Partner: UNT Libraries Government Documents Department

Reconciling Change in Oi-Horizon 14C With Mass Loss for an Oak Forest

Description: First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the {sup 14}C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the {sup 14}C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies ({approx}35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the {sup 14}C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the {sup 14}C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures are subject to C immobilization and recycling in the microbial pool, and do not necessarily reflect results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent {sup 14}C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.
Date: June 27, 2005
Creator: Hanson, P J; Swanston, C W; Garten, Jr., C T; Todd, D E & Trumbore, S E
Partner: UNT Libraries Government Documents Department

Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers

Description: Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.
Date: March 5, 2010
Creator: Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P; Janowski, B; Todd, D & Liggat, J J
Partner: UNT Libraries Government Documents Department

Partially-Premixed Flames in Internal Combustion Engines

Description: This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers, toluene and 3-pentanone. With this method, oxygen, fuel and equivalence ratio were measured in the cylinder. At General Motors, graduate students from the University of Michigan and Vanderbilt University worked with GM researchers to develop high-speed imaging methods ...
Date: November 5, 2003
Creator: Pitz, Robert W.; Drake, Michael C.; Fansler, Todd D. & Sick, Volker
Partner: UNT Libraries Government Documents Department

MAGNETIC PARAMETERS OF A NB3SN SUPERCONDUCTING MAGNET FOR A 56 HGz ECR ION SOURCE

Description: Third generation Electron Cyclotron Resonance (ECR) ion sources operate at microwave frequencies between 20 and 30 GHz and employ NbTi superconducting magnets with a conductor peak field of 6-7 T. A significant gain in performance can be achieved by replacing NbTi with Nb{sub 3}Sn, allowing solenoids and sextupole coils to reach a field of 15 T in the windings. In this paper we describe the design of a Nb{sub 3}Sn superconducting magnet for a fourth generation ECR source operating at a microwave frequency of 56 GHz. The magnet design features a configuration with an internal sextupole magnet surrounded by three solenoids. A finite element magnetic model has been used to investigate conductor peak fields and the operational margins. Results of the numerical analysis are presented and discussed.
Date: May 4, 2009
Creator: Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S. et al.
Partner: UNT Libraries Government Documents Department

4th Generation ECR Ion Sources

Description: The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materials such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.
Date: December 1, 2008
Creator: Lyneis, Claude M.; Leitner, D.; Todd, D.S.; Sabbi, G.; Prestemon, S.; Caspi, S. et al.
Partner: UNT Libraries Government Documents Department

Nb3Sn superconducting magnets for electron cyclotron resonance ion sources

Description: Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb{sub 3}Sn superconducting technology for several years. At the moment, Nb{sub 3}Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb{sub 3}Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb{sub 3}Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb{sub 3}Sn- , particular care is required in the design of the magnet support structure, which must be capable of providing ...
Date: May 4, 2009
Creator: Ferracin, P.; Caspi, S.; Felice, H.; Leitner, D.; Lyneis, C. M.; Prestemon, S. et al.
Partner: UNT Libraries Government Documents Department

Design of a Nb3Sn Magnet for a 4th Generation ECR Ion Source

Description: The next generation of Electron Cyclotron Resonant (ECR) ion sources are expected to operate at a heating radio frequency greater than 40 GHz. The existing 3rd generation systems, exemplified by the state of the art system VENUS, operate in the 10-28 GHz range, and use NbTi superconductors for the confinement coils. The magnetic field needed to confine the plasma scales with the rf frequency, resulting in peak fields on the magnets of the 4th generation system in excess of 10 T. High field superconductors such as Nb{sub 3}Sn must therefore be considered. The magnetic design of a 4th. generation ECR ion source operating at an rf frequency of 56 GHz is considered. The analysis considers both internal and external sextupole configurations, assuming commercially available Nb{sub 3}Sn material properties. Preliminary structural design issues are discussed based on the forces and margins associated with the coils in the different configurations, leading to quantitative data for the determination of a final magnet design.
Date: August 17, 2008
Creator: Prestemon, S,; Trillaud, F.; Caspi, S.; Ferracin, P.; Sabbi, G. L.; Lyneis, C. M. et al.
Partner: UNT Libraries Government Documents Department

Description and field performance of the Walker Branch throughfall displacement experiment: 1993--1996

Description: The authors are conducting a large-scale manipulative field experiment in an upland oak forest on the Walker Branch Watershed in eastern Tennessee to identify important ecosystem responses that might result from future precipitation changes. The manipulation of soil water content is being implemented by a gravity-driven transfer of throughfall from one 6400-m{sup 2} treatment plot to another. Throughfall is intercepted in {approx}1850 subcanopy troughs suspended above the forest floor of the dry plot and transferred by gravity flow across an ambient plot for subsequent distribution onto the wet treatment plot. Soil water content is being monitored at two depths with time domain reflectometers at 310 sampling locations across the site. The experimental system is able to produce statistically significant differences in soil water content in years having both dry and wet conditions. Maximum soil water content differentials between wet and dry plots in the 0- to 0.35-m horizon were 8 to 10% during summers with abundant precipitation and 3 to 5% during drought periods. Treatment impacts on soil water potential were restricted to the surface soil layer. Comparisons of pre- and post-installation soil and litter temperature measurements showed the ability of the experimental design to produce changes in soil water content and water potential without creating large artifacts in the forest understory environment.
Date: April 1, 1998
Creator: Hanson, P.J.; Todd, D.E.; Huston, M.A.; Joslin, J.D.; Croker, J.L. & Auge, R.M.
Partner: UNT Libraries Government Documents Department