6 Matching Results

Search Results

Advanced search parameters have been applied.

Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

Description: The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.
Date: October 1, 2005
Creator: Lister, T. E.; Mizia, R. E. & Tian, H.
Partner: UNT Libraries Government Documents Department

Regenerable Sorbent Development for Sulfur, Chloride and Ammonia Removal from Coal-Derived Synthesis Gas

Description: A large number of components in coal form corrosive and toxic compounds during coal gasification processes. DOE’s NETL aims to reduce contaminants to parts per billion in order to utilize gasification gas streams in fuel cell applications. Even more stringent requirements are expected if the fuel is to be utilized in chemical production applications. Regenerable hydrogen sulfide removal sorbents have been developed at NETL. These sorbents can remove the hydrogen sulfide to ppb range at 316 °C and at 20 atmospheres. The sorbent can be regenerated with oxygen. Reactivity and physical durability of the sorbent did not change during the multi-cycle tests. The sorbent development work has been extended to include the removal of other major impurities, such as HCl and NH3. The sorbents for HCl removal that are available today are not regenerable. Regenerable HCl removal sorbents have been developed at NETL. These sorbents can remove HCl to ppb range at 300 °C to 500 °C. The sorbent can be regenerated with oxygen. Results of TGA and bench-scale flow reactor tests with both regenerable and non-regenerable HCl removal sorbents will be discussed in the paper. Bench-scale reactor tests were also conducted with NH3 removal sorbents. The results indicated that the sorbents have a high removal capacity and good regenerability during the multi-cycle tests. Future emphasis of the NETL coal gasification/cleanup program is to develop multi-functional sorbents to remove multiple impurities in order to minimize the steps involved in the cleanup systems. To accomplish this goal, a regenerable sorbent capable of removing both HCl and H2S was developed. The results of the TGA conducted with the sorbent to evaluate the feasibility of both H2S and HCl sorption will be discussed in this paper.
Date: August 1, 2007
Creator: Siriwardane, R. V.; Tian, H.; Simonyi, T. & Webster, T.
Partner: UNT Libraries Government Documents Department

Detailed Performance Model for Photovoltaic Systems: Preprint

Description: This paper presents a modified current-voltage relationship for the single diode model. The single-diode model has been derived from the well-known equivalent circuit for a single photovoltaic cell. The modification presented in this paper accounts for both parallel and series connections in an array.
Date: July 1, 2012
Creator: Tian, H.; Mancilla-David, F.; Ellis, K.; Muljadi, E. & Jenkins, P.
Partner: UNT Libraries Government Documents Department

Microstructure and Strength Characteristics of Alloy 617 Welds

Description: Three types of high-temperature joints were created from alloy 617 base metal: fusion welds, braze joints, and diffusion bonds. The microstructures of all joint types and tensile properties of fusion welds and braze joints were characterized. Sound fusion welds were created by the GTAW process with alloy 617 filler wire. Cross-weld tensile strengths were equal to the parent metal at temperatures of 25, 800, and 1000°C; ductilities of the joints were only slightly lower than that of the parent metal. Failure occurred in the weld fusion zone at room temperature and in the parent metal at elevated temperatures. Incomplete wetting occurred in joints produced by vacuum brazing using AWS BNi-1 braze alloy, believed to be due to tenacious Al and Ti oxide formation. Incompletely bonded butt joints showed relatively poor tensile properties. A second set of braze joints has been created with faying surfaces electroplated with pure Ni prior to brazing; characterization of these joints is in progress. Conditions resulting in good diffusion bonds characterized by grain growth across the bondline and no porosity were determined: vacuum bonding at 1150°C for 3 hours with an initial uniaxial stress of 20 MPa (constant ram displacement). A 15 µm thick pure Ni interlayer was needed to achieve grain growth across the bondline. Tensile testing of diffusion bonds is in progress
Date: June 1, 2005
Creator: Totemeier, T.C.; Tian, H.; Clark, D.E. & Simpson, J.A.
Partner: UNT Libraries Government Documents Department

Superconducting Multi-Cell Deflecting Cavity for Short-Pulse X-Ray Generation at the Advanced Photon Source

Description: A superconducting multi-cell cavity for the production of short x-ray pulses at the Advanced Photon Source (APS) has been explored as an alternative to a single-cell cavity design in order to improve the packing factor and potentially reduce the number of high-power RF systems and low-level RF controls required. The cavity will operate at 2815 MHz in the APS storage ring and will require heavy damping of parasitic modes to maintain stable beam operation. Novel on-cell dampers, attached directly to the cavity body, have been utilized by taking advantage of the magnetic field null on the equatorial plane in order to enhance damping. Design issues and simulation results will be discussed.
Date: May 1, 2009
Creator: G.J. Waldschmidt, L.H. Morrison, R. Nassiri, R.A. Rimmer, K. Tian, H. Wang
Partner: UNT Libraries Government Documents Department

A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program Site Synthesis

Description: Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO{sub 2} exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO{sub 2} exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans {approx}220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO{sub 2} exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was {approx}10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.
Date: June 1, 2011
Creator: Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I. et al.
Partner: UNT Libraries Government Documents Department