6 Matching Results

Search Results

Advanced search parameters have been applied.

FFTF disposable solid waste cask

Description: Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.
Date: January 1, 1983
Creator: Thomson, J. D. & Goetsch, S. D.
Partner: UNT Libraries Government Documents Department

Fast Flux Test Facility replacement of a primary sodium pump

Description: The Fast Flux Test Facility is a 400 MW Thermal Sodium Cooled Fast Reactor operated by Westinghouse Hanford Company for the US Department of Energy. During startup testing in 1979, the sodium level in one of the primary sodium pumps was inadvertently raised above the normal height. This resulted in distortion of the pump shaft. Pump replacement was carried out using special maintenance equipment. Nuclear radiation and contamination were not significant problems since replacement operations were carried out shortly after startup of the Fast Flux Test Facility.
Date: November 15, 1985
Creator: Krieg, S.A. & Thomson, J.D.
Partner: UNT Libraries Government Documents Department

Corrosion considerations for life management of Hanford high-level waste tanks

Description: The potential for corrosion-related aging mechanisms to be active in the Hanford Site waste tanks is frequently questioned and there are related uncertainties. This paper considers surveillance and analyses for evaluating the potential influence of corrosion processes such as stress corrosion cracking, pitting, crevice corrosion of the reinforced concrete steel on the useful life of Hanford radioactive waste tanks. There are two types of Hanford Site underground reinforced concrete, carbon steel lined waste tank structures. They primarily store caustic nitrate wastes, some at elevated temperatures, from defense reprocessing of spent nuclear fuels. Some of the Hanford waste tanks have leaked radioactive liquid waste to the soil. These leaks are possibly due to nitrate-induced stress corrosion cracking. Major efforts prescribed to avoid nitrate-induced stress corrosion cracking in newer tank designs appear successful. A potential for pitting and crevice corrosion cracking in the carbon steel liners exists. There has been no evidence of significant uniform corrosion of the carbon steel liners and there has been no evidence of waste tank degradation caused by corrosion of the concrete reinforcing steel. A waste tank life management program is being developed to qualify the Hanford waste tanks for continued safe storage of these wastes. Corrosion evaluations, structural analyses, and surveillance are required to qualify the tanks and to promptly detect evidence of possible distress.
Date: October 1, 1993
Creator: Ohl, P. C.; Vollert, F. R. & Thomson, J. D.
Partner: UNT Libraries Government Documents Department