13 Matching Results

Search Results

Advanced search parameters have been applied.

Anisotropies in magnetic field evolution and local Lyapunov exponents

Description: The natural occurrence of small scale structures and the extreme anisotropy in the evolution of a magnetic field embedded in a conducting flow is interpreted in terms of the properties of the local Lyapunov exponents along the various local characteristic (un)stable directions for the Lagrangian flow trajectories. The local Lyapunov exponents and the characteristic directions are functions of Lagrangian coordinates and time, which are completely determined once the flow field is specified. The characteristic directions that are associated with the spatial anisotropy of the problem, are prescribed in both Lagrangian and Eulerian frames. Coordinate transformation techniques are employed to relate the spatial distributions of the magnetic field, the induced current density, and the Lorentz force, which are usually followed in Eulerian frame, to those of the local Lyapunov exponents, which are naturally defined in Lagrangian coordinates.
Date: January 13, 2000
Creator: Tang, X.Z. & Boozer, A.H.
Partner: UNT Libraries Government Documents Department

Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

Description: Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s(3/2)/sub 1//sup 0/ and 5d(3/2)/sub 1//sup 0/ states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe/sup +/ in either the /sup 2/P/sub 1/2/ or /sup 2/P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the (3+1) REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from (3+1) via the 7s(3/2)/sub 1//sup 0/ state into Xe/sup +/ /sup 2/P/sub 3/2/ (core preserving) or Xe/sup +/ /sup 2/P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs.
Date: November 1, 1988
Creator: Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A. & Lambropoulos, P.
Partner: UNT Libraries Government Documents Department

Modulus dispersion and attenuation in tuff and granite

Description: The effects of loading frequency, strain amplitude, and saturation on elastic moduli and attenuation have been measured in samples of the Topopah Spring Member welded tuff. Four different laboratory techniques have been used to determine Young`s modulus and extensional wave attenuation at frequencies ranging from 10{sup {minus}2} to 10{sup 6} Hz. The results are compared with data acquired for Sierra White granite under the same conditions. The modulus and attenuation in room dry samples remain relatively constant over frequency. Frequency dependent attenuation and modulus dispersion are observed in the saturated samples and are attributed to fluid flow and sample size. The properties of tuff were independent of strain amplitude in room dry and saturated conditions.
Date: December 23, 1991
Creator: Haupt, R.W.; Martin, R.J. III; Tang, X.; Dupree, W.J. & Price, R.H.
Partner: UNT Libraries Government Documents Department

Excess oxygen defects in layered cuprates

Description: Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed. 16 refs., 2 figs.
Date: September 1, 1990
Creator: Lightfoot, P.; Pei, S.Y.; Jorgensen, J.D. (Argonne National Lab., IL (USA)); Manthiram, A.; Tang, X.X. & Goodenough, J.B. (Texas Univ., Austin, TX (USA). Materials Science Lab.)
Partner: UNT Libraries Government Documents Department

The Structure of 12N using 11C + p resonance scattering

Description: The level structure of {sup 12}N has been investigated from 2.2 to 11.0 MeV in excitation energy using a {sup 11}C + p resonance interaction with thick targets and inverse kinematics. Excitation functions were fitted using an R-matrix approach. Sixteen levels in {sup 12}N were included in the analysis, several of them are new. Spin-parity assignments, excitation energies and widths are proposed for these levels. To fit the high energy part of the excitation function, imaginary phase shifts had to be added to the phase shifts generated by the hard sphere scattering.
Date: March 2, 2006
Creator: Perajarvi, K.; Chang, Bo Fu; Rogachev, G.V.; Chubarian, G.; Goldberg, V.Z.; Guo, Q. et al.
Partner: UNT Libraries Government Documents Department

The National Spherical Torus Experiment (NSTX) Research Program and Progress Towards High Beta, Long Pulse Operating Scenarios

Description: A major research goal of the National Spherical Torus Experiment is establishing long-pulse, high-beta, high-confinement operation and its physics basis. This research has been enabled by facility capabilities developed over the last two years, including neutral-beam (up to 7 MW) and high-harmonic fast-wave heating (up to 6 MW), toroidal fields up to 6 kG, plasma currents up to 1.5 MA, flexible shape control, and wall preparation techniques. These capabilities have enabled the generation of plasmas with <beta {sub T}> up to 35%. Normalized beta values often exceed the no wall limit, and studies suggest that passive wall mode stabilization is enabling this for broad pressure profiles characteristic of H-mode plasmas. The viability of long, high bootstrap-current fraction operations has been established for ELMing H-mode plasmas with toroidal beta values in excess of 15% and sustained for several current relaxation times. Improvements in wall conditioning and fueling are likely contributing to a reduction in H-mode power thresholds. Electron thermal conduction is the dominant thermal loss channel in auxiliary-heated plasmas examined thus far. High-harmonic fast-wave (HHFW) effectively heats electrons, and its acceleration of fast beam ions has been observed. Evidence for HHFW current drive is by comparing of the loop voltage evolution in plasmas with matched density and temperature profiles but varying phases of launched HHFW waves. A peak heat flux of 10 MW/m superscript ''2'' has been measured in the H-mode, with large asymmetries in the power deposition being observed between the inner and outer strike points. Noninductive plasma start-up studies have focused on coaxial helicity injection. With this technique, toroidal currents up to 400 kA have been driven, and studies to assess flux closure and coupling to other current-drive techniques have begun.
Date: October 15, 2002
Creator: Synakowski, E. J.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W. et al.
Partner: UNT Libraries Government Documents Department

Progress Towards High Performance, Steady-state Spherical Torus

Description: Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted on NSTX to test the method up to Ip {approx} ...
Date: October 2, 2003
Creator: Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W. et al.
Partner: UNT Libraries Government Documents Department

Status and Plans for the National Spherical Torus Experimental Research Facility

Description: An overview of the research capabilities and the future plans on the MA-class National Spherical Torus Experiment (NSTX) at Princeton is presented. NSTX research is exploring the scientific benefits of modifying the field line structure from that in more conventional aspect ratio devices, such as the tokamak. The relevant scientific issues pursued on NSTX include energy confinement, MHD stability at high beta, non-inductive sustainment, solenoid-free start-up, and power and particle handling. In support of the NSTX research goal, research tools are being developed by the NSTX team. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a high beta Demo device based on the ST, are being considered. For these, it is essential to develop high performance (high beta and high confinement), steady-state (non-inductively driven) ST operational scenarios and an efficient solenoid-free start-up concept. We will also briefly describe the Next-Step-ST (NSST) device being designed to address these issues in fusion-relevant plasma conditions.
Date: July 27, 2005
Creator: Columbia University
Partner: UNT Libraries Government Documents Department