3 Matching Results

Search Results

Advanced search parameters have been applied.

Diurnal oscillation of SBE expression in sorghum endosperm

Description: Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.
Date: January 15, 2009
Creator: Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y. & Jansson, C.
Partner: UNT Libraries Government Documents Department

Antisense oligodeoxynucleotide inhibition as a potent diagnostic tool for gene function in plant biology

Description: Antisense oligodeoxynucleotide (ODN) inhibition emerges as an effective means for probing gene function in plant cells. Employing this method we have established the importance of the SUSIBA2 transcription factor for regulation of starch synthesis in barley endosperm, and arrived at a model for the role of the SUSIBAs in sugar signaling and source-sink commutation during cereal endosperm development. In this addendum we provide additional data demonstrating the suitability of the antisense ODN technology in studies on starch branching enzyme activities in barley leaves. We also comment on the mechanism for ODN uptake in plant cells. Antisense ODNs are short (12-25 nt-long) stretches of single-stranded ODNs that hybridize to the cognate mRNA in a sequence-specific manner, thereby inhibiting gene expression. They are naturally occurring in both prokaryotes and eukaryotes where they partake in gene regulation and defense against viral infection. The mechanisms for antisense ODN inhibition are not fully understood but it is generally considered that the ODN either sterically interferes with translation or promotes transcript degradation by RNase H activation. The earliest indication of the usefulness of antisense ODN technology for the purposes of molecular biology and medical therapy was the demonstration in 1978 that synthetic ODNs complementary to Raos sarcoma virus could inhibit virus replication in tissue cultures of chick embryo fibroblasts. Since then the antisense ODN technology has been widely used in animal sciences and as an important emerging therapeutic approach in clinical medicine. However, antisense ODN inhibition has been an under-exploited strategy for plant tissues, although the prospects for plant cells in suspension cultures to take up single-stranded ODNs was reported over a decade ago. In 2001, two reports from Malho and coworker demonstrated the use of cationic-complexed antisense ODNs to suppress expression of genes encoding pollen-signaling proteins in pollen tubes from the lilly Agapanthus umbellatus. For ...
Date: January 15, 2008
Creator: Jansson, Christer; Sun, Chuanxin; Ghebramedhin, Haile; Hoglund, Anna-Stina & Jansson, Christer
Partner: UNT Libraries Government Documents Department

Sugar-mediated semidian oscillation of gene expression in the cassava storage root regulates starch synthesis

Description: Starch branching enzyme (SBE) activity in the cassava storage root exhibited a diurnal fluctuation, dictated by a transcriptional oscillation of the corresponding SBE genes. The peak of SBE activity coincided with the onset of sucrose accumulation in the storage, and we conclude that the oscillatory mechanism keeps the starch synthetic apparatus in the storage root sink in tune with the flux of sucrose from the photosynthetic source. When storage roots were uncoupled from the source, SBE expression could be effectively induced by exogenous sucrose. Turanose, a sucrose isomer that cannot be metabolized by plants, mimicked the effect of sucrose, demonstrating that downstream metabolism of sucrose was not necessary for signal transmission. Also glucose and glucose-1-P induced SBE expression. Interestingly, induction by sucrose, turanose and glucose but not glucose-1-P sustained an overt semidian (12-h) oscillation in SBE expression and was sensitive to the hexokinase (HXK) inhibitor glucosamine. These results suggest a pivotal regulatory role for HXK during starch synthesis. Abscisic acid (ABA) was another potent inducer of SBE expression. Induction by ABA was similar to that of glucose-1-P in that it bypassed the semidian oscillator. Both the sugar and ABA signaling cascades were disrupted by okadaic acid, a protein phosphatase inhibitor. Based on these findings, we propose a model for sugar signaling in regulation of starch synthesis in the cassava storage root.
Date: January 15, 2008
Creator: Jansson, Christer; Baguma, Yona; Sun, Chuanxin; Boren, Mats; Olsson, Helena; Rosenqvist, Sara et al.
Partner: UNT Libraries Government Documents Department