9 Matching Results

Search Results

Advanced search parameters have been applied.

Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

Description: We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle {phi}. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion {approx} 10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through {phi}'s required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into {tau}'s is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.
Date: June 19, 2009
Creator: Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E. & /KIPAC, Menlo Park
Partner: UNT Libraries Government Documents Department

MeV Dark Matter and Small Scale Structure

Description: WIMPs with electroweak scale masses (neutralinos, etc.) remain in kinetic equilibrium with other particle species until temperatures approximately in the range of 10 MeV to 1 GeV, leading to the formation of dark matter substructure with masses as small as 10{sup -4} M{sub {circle_dot}} to 10{sup -12} M{sub {circle_dot}}. However, if dark matter consists of particles with MeV scale masses, as motivated by the observation of 511 keV emission from the Galactic Bulge, such particles are naturally expected to remain in kinetic equilibrium with the cosmic neutrino background until considerably later times. This would lead to a strong suppression of small scale structure with masses below about 10{sup 7}M{sub {circle_dot}} to 10{sup 4} M{sub {circle_dot}}. This cutoff scale has important implications for present and future searches for faint Local Group satellite galaxies and for the missing satellites problem.
Date: April 1, 2007
Creator: Hooper, Dan; /Fermilab; Kaplinghat, Manoj; Strigari, Louis E.; /UC, Irvine; Zurek, Kathryn M. et al.
Partner: UNT Libraries Government Documents Department

The Impact of Inhomogeneous Reionization on the Satellite Galaxy Population of the Milky Way

Description: We use the publicly available subhalo catalogs from the via Lactea simulation along with a Gpc-scale N-body simulation to understand the impact of inhomogeneous reionization on the satellite galaxy population of the Milky Way. The large-volume simulation is combined with a model for reionization that allows us to predict the distribution of reionization times for Milky Way mass halos. Motivated by this distribution, we identify candidate satellite galaxies in the simulation by requiring that any subhalo must grow above a specified mass threshold before it is reionized; after this time the photoionizing background will suppress both the formation of stars and the accretion of gas. We show that varying the reionization time over the range expected for Milky Way mass halos can change the number of satellite galaxies by roughly two orders of magnitude. This conclusion is in contradiction with a number of studies in the literature, and we conclude that this is a result of inconsistent application of the results of Gnedin (2000); subtle changes in the assumptions about how reionization affects star formation in small galaxies can lead to large changes in the effect of changing the reionization time on the number of satellites. We compare our satellite galaxies to observations using both abundance matching and stellar population synthesis methods to assign luminosities to our subhalos and account for observational completeness effects. Additionally, if we assume that the mass threshold is set by the virial temperature T{sub vir} = 8 x 10{sup 3} K we find that our model accurately matches the vmax distribution, radial distribution, and luminosity function of observed Milky Way satellites for a reionization time z{sub reion} = 9.6{sub -2.1}{sup 1.0}, assuming that the via Lactea subhalo distribution is representative of the Milky Way. This results in the presence of 119{sub -50}{sup +202} satellite galaxies.
Date: August 3, 2009
Creator: Busha, Michael T.; Alvarez, Marcelo A.; Wechsler, Risa H.; Abel, Tom; Strigari, Louis E. & /KIPAC, Menlo Park
Partner: UNT Libraries Government Documents Department

Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1

Description: We use new kinematic data from the ultra-faint Milky Way satellite Segue 1 to model its dark matter distribution and derive upper limits on the dark matter annihilation cross-section. Using gamma-ray ux upper limits from the Fermi satellite and MAGIC, we determine cross-section exclusion regions for dark matter annihilation into a variety of different particles including charged leptons. We show that these exclusion regions are beginning to probe the regions of interest for a dark matter interpretation of the electron and positron uxes from PAMELA, Fermi, and HESS, and that future observations of Segue 1 have strong prospects for testing such an interpretation. We additionally discuss prospects for detecting annihilation with neutrinos using the IceCube detector, finding that in an optimistic scenario a few neutrino events may be detected. Finally we use the kinematic data to model the Segue 1 dark matter velocity dispersion and constrain Sommerfeld enhanced models.
Date: August 11, 2011
Creator: Essig, Rouven; /SLAC; Sehgal, Neelima; Strigari, Louis E.; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Geha, Marla et al.
Partner: UNT Libraries Government Documents Department