23 Matching Results

Search Results

Advanced search parameters have been applied.

Microstructural Characterization of Nodular Ductile Iron

Description: The objective of this study is to quantify the graphite particle phase in nodular ductile iron (NDI). This study provides the basis for initializing microstructure in direct numerical simulations, as part of developing microstructure-fracture response models. The work presented here is a subset of a PhD dissertation on spall fracture in NDI. NDI is an ideal material for studying the influence of microstructure on ductile fracture because it contains a readily identifiable second-phase particle population, embedded in a ductile metallic matrix, which serves as primary void nucleation sites. Nucleated voids grow and coalesce under continued tensile loading, as part of the micromechanisms of ductile fracture, and lead to macroscopic failure. For this study, we used 2D optical microscopy and quantitative metallography relationships to characterize the volume fraction, size distribution, nearest-neighbor distance, and other higher-order metrics of the graphite particle phase. We found that the volume fraction was {Phi} = 0.115, the average particle diameter was d{sub avg} = 25.9 {mu}m, the Weibull shape and scaling parameters were {beta} = 1.8 and {eta} = 29.1 {mu}m, respectively, the (first) nearest neighbor distance was L{sub nn} = 32.4 {mu}m, the exponential coefficients for volume fraction fluctuations was A{sub {Phi}} = 1.89 and B{sub {Phi}} = -0.59, respectively. Based on reaching a coefficient-of-variation (COV) of 0.01, the representative volume element (RVE) size was determined to be 8.9L{sub nn} (288 {mu}m).
Date: January 3, 2012
Creator: Springer, H. K.
Partner: UNT Libraries Government Documents Department

Mechanical Characterization of Nodular Ductile Iron

Description: The objective of this study is to characterize the strength and fracture response of nodular ductile iron (NDI) and its underlying ferritic matrix phase. Quasistatic and split Hopkinson pressure bar (SHPB) compression tests were performed on NDI and a model material for the NDI matrix phase (Fe-Si alloy). Smooth and notch round bar (NRB) samples were loaded in tension until fracture to determine strain-at-failure with varying stress triaxiality. Multiple tests were performed on each small and large smooth bar samples to obtain fracture statistics with sample size. Fracture statistics are important for initializing simulations of fragmentation events. Johnson-Cook strength models were developed for the NDI and the Fe-Si alloy. NDI strength model parameters are: A = 525 MPa, B = 650 MPa, n = 0.6, and C = 0.0205. The average SHPB experimental strain-rate of 2312/s was used for the reference strain-rate in this model. Fe-Si alloy strength model parameters are: A=560 MPa, B = 625 MPa, n = 0.5, and C = 0.02. The average SHPB experimental strain-rate of 2850/s was used for the reference strain-rate in this model. A Johnson-Cook failure model was developed for NDI with model parameters: D{sub 1} = 0.029, D{sub 2} = 0.44, D{sub 3} = -1.5, and D{sub 4} = D{sub 5} = 0. An exponential relationship was developed for the elongation-at-failure statistics as a function of length-scale with model parameters: S{sub f1} = 0.108, S{sub f2} = -0.00169, and L{sub m} = 32.4 {mu}m. NDI strength and failure models, including failure statistics, will be used in continuum-scale simulations of explosively-driven ring fragmentation. The Fe-Si alloy strength model will be used in mesoscale simulations of spall fracture in NDI, where the NDI matrix phase is captured explicitly.
Date: January 3, 2012
Creator: Springer, H K
Partner: UNT Libraries Government Documents Department

Feasibility of High-Power Diode Laser Array Surrogate to Support Development of Predictive Laser Lethality Model

Description: Predictive modeling and simulation of high power laser-target interactions is sufficiently undeveloped that full-scale, field testing is required to assess lethality of military directed-energy (DE) systems. The cost and complexity of such testing programs severely limit the ability to vary and optimize parameters of the interaction. Thus development of advanced simulation tools, validated by experiments under well-controlled and diagnosed laboratory conditions that are able to provide detailed physics insight into the laser-target interaction and reduce requirements for full-scale testing will accelerate development of DE weapon systems. The ultimate goal is a comprehensive end-to-end simulation capability, from targeting and firing the laser system through laser-target interaction and dispersal of target debris; a 'Stockpile Science' - like capability for DE weapon systems. To support development of advanced modeling and simulation tools requires laboratory experiments to generate laser-target interaction data. Until now, to make relevant measurements required construction and operation of very high power and complex lasers, which are themselves costly and often unique devices, operating in dedicated facilities that don't permit experiments on targets containing energetic materials. High power diode laser arrays, pioneered by LLNL, provide a way to circumvent this limitation, as such arrays capable of delivering irradiances characteristic of De weapon requires are self-contained, compact, light weight and thus easily transportable to facilities, such as the High Explosives Applications Facility (HEAF) at Lawrence Livermore National Laboratory (LLNL) where testing with energetic materials can be performed. The purpose of this study was to establish the feasibility of using such arrays to support future development of advanced laser lethality and vulnerability simulation codes through providing data for materials characterization and laser-material interaction models and to validate the accuracy of code predictions. This project was a Feasibility Study under the LLNL Laboratory Directed Research and Development (LDRD) Program.
Date: January 13, 2011
Creator: Lowdermilk, W H; Rubenchik, A M & Springer, H K
Partner: UNT Libraries Government Documents Department

The role and importance of porosity in the deflagration rates of HMX-based materials

Description: The deflagration behavior of thermally damaged HMX-based materials will be discussed. Strands of material were burned at pressures ranging from 10-300 MPa using the LLNL high pressure strand burner. Strands were heated in-situ and burned while still hot; temperatures range from 90-200 C and were chosen in order to allow for thermal damage of the material without significant decomposition of the HMX. The results indicate that multiple variables affect the burn rate but the most important are the polymorph of HMX and the nature and thermal stability of the non-HE portion of the material. Characterization of the strands indicate that the thermal soak produces significant porosity and permeability in the sample allowing for significantly faster burning due to the increased surface area and new pathways for flame spread into the material. Specifically, the deflagration rates of heated PBXN-9, LX-10, and PBX-9501 will be discussed and compared.
Date: March 15, 2011
Creator: Glascoe, E A; Hsu, P C & Springer, H K
Partner: UNT Libraries Government Documents Department

Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

Description: Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap ...
Date: September 6, 2010
Creator: Springer, H. K.; Miller, W. O.; Levatin, J. L.; Pertica, A. J. & Olivier, S. S.
Partner: UNT Libraries Government Documents Department

Explosively driven facture and fragmentation of metal cylinders and rings

Description: Cylinders and rings fabricated from AerMet{reg_sign} 100 alloy and AISI 1018 steel have been explosively driven to fragmentation in order to determine the fracture strains for these materials under plane strain and uniaxial stress conditions. The phenomena associated with the dynamic expansion and subsequent break up of the cylinders are monitored with high-speed diagnostics. In addition, complementary experiments are performed in which fragments from the explosively driven cylinder are recovered and analyzed to determine the statistical distribution associated with the fragmentation process as well as to determine failure mechanisms. The data are used to determine relevant coefficients for the Johnson-Cook (Hancock-McKenzie) fracture model. Metallurgical analysis of the fragments provides information on damage and failure mechanisms.
Date: January 3, 2007
Creator: Goto, D; Becker, R C; Orzechowski, T J; Springer, H K; Sunwoo, A J & Syn, C K
Partner: UNT Libraries Government Documents Department


Description: Initially undamaged polymer-bonded explosives can transition from conductive burning to more violent convective burning via rapid deconsolidation at higher pressures. The pressure-dependent infiltration of cracks and pores, i.e., damage, by product gases at the burn-front is a key step in the transition to convective burning. However, the relative influence of pre-existing damage and the evolution of deflagration-induced damage during the transition to convective burning is not well understood. The objective of this study is to investigate the role of microstructure and initial pressurization on deconsolidation. We performed simulations using the multi-physics hydrocode, ALE3D. HMX-Viton A served as our model explosive. A Prout-Tompkins chemical kinetic model, Vielle's Law pressure-dependent burning, Gruneisen equation-of-state, and simplified strength model were used for the HMX. The propensity for deconsolidation increased with increasing defect size and decreasing initial pressurization, as measured by the increase in burning surface area. These studies are important because they enable the development of continuum-scale damage models and the design of inherently safer explosives.
Date: August 1, 2011
Creator: Springer, H K; Glascoe, E A; Reaugh, J E; Kercher, J R & Maienschein, J L
Partner: UNT Libraries Government Documents Department

Mesoscale Modeling of LX-17 Under Isentropic Compression

Description: Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weighted specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.
Date: March 6, 2010
Creator: Springer, H K; Willey, T M; Friedman, G; Fried, L E; Vandersall, K S & Baer, M R
Partner: UNT Libraries Government Documents Department

Metallurgical Analysis of Dynamically Deformed Aermet 100 Alloy Fragments

Description: Microstructural characterization of soft-captured fragments of explosive-driven AerMet 100 alloy hollow cylinders is performed to understand dynamic deformation and localization phenomena. Examination of the fragments reveals the deformation is characterized by bands of localized shear strain and cracking. Fracture surface morphologies for the cylinders are ductile dimples, indicative of tensile or shear failure. Although both annealed and maraged AerMet 100 exhibit similar phenomenon, the width of the shear band in the annealed material is wider than in the maraged material, suggesting the former is more resistant to shear banding.
Date: August 23, 2004
Creator: Sunwoo, A J; Becker, R; Goto, D M; Orzechowski, T J; Springer, H K & Syn, C K
Partner: UNT Libraries Government Documents Department

Modeling and characterization of recompressed damaged materials

Description: Experiments have been performed to explore conditions under which spall damage is recompressed with the ultimate goal of developing a predictive model. Spall is introduced through traditional gas gun techniques or with laser ablation. Recompression techniques producing a uniaxial stress state, such as a Hopkinson bar, do not create sufficient confinement to close the porosity. Higher stress triaxialities achieved through a gas gun or laser recompression can close the spall. Characterization of the recompressed samples by optical metallography and electron microscopy reveal a narrow, highly deformed process zone. At the higher pressures achieved in the gas gun, little evidence of spall remains other than differentially etched features in the optical micrographs. With the very high strain rates achieved with laser techniques there is jetting from voids and other signs of turbulent metal flow. Simulations of spall and recompression on micromechanical models containing a single void suggest that it might be possible to represent the recompression using models similar to those employed for void growth. Calculations using multiple, randomly distributed voids are needed to determine if such models will yield the proper behavior for more realistic microstructures.
Date: February 11, 2004
Creator: Becker, R; Cazamias, J U; Kalantar, D H; LeBlanc, M M & Springer, H K
Partner: UNT Libraries Government Documents Department

The response of the HMX-based material PBXN-9 to thermal insults: thermal decomposition kinetics and morphological changes

Description: PBXN-9, an HMX-formulation, is thermally damaged and thermally decomposed in order to determine the morphological changes and decomposition kinetics that occur in the material after mild to moderate heating. The material and its constituents were decomposed using standard thermal analysis techniques (DSC and TGA) and the decomposition kinetics are reported using different kinetic models. Pressed parts and prill were thermally damaged, i.e. heated to temperatures that resulted in material changes but did not result in significant decomposition or explosion, and analyzed. In general, the thermally damaged samples showed a significant increase in porosity and decrease in density and a small amount of weight loss. These PBXN-9 samples appear to sustain more thermal damage than similar HMX-Viton A formulations and the most likely reasons are the decomposition/evaporation of a volatile plasticizer and a polymorphic transition of the HMX from {beta} to {delta} phase.
Date: December 10, 2010
Creator: Glascoe, E A; Hsu, P C; Springer, H K; DeHaven, M R; Tan, N & Turner, H C
Partner: UNT Libraries Government Documents Department


Description: Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.
Date: August 3, 2011
Creator: HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K et al.
Partner: UNT Libraries Government Documents Department

Adiabatic shear band formation in explosively driven AerMet-100 alloy cylinders

Description: Two differently heat-treated AerMet-100 alloy cylinders were explosively driven to fragmentation. Soft-captured fragments were studied to characterize the deformation and damage induced by high explosive loading. The characterization of the fragments reveals that the dominant failure mechanism appears to be dynamic fracture along adiabatic shear bands. These shear bands differ in size and morphology depending on the heat-treated conditions. Nanoindentation measurements of the adiabatic shear bands in either material condition indicate higher hardness in the bands compared to the matrix regions of the fragments.
Date: February 8, 2006
Creator: Sunwoo, A J; Becker, R; Goto, D M; Orzechowski, T J; Springer, H K; Syn, C K et al.
Partner: UNT Libraries Government Documents Department

Propagation of Reactions in Thermally-damaged PBX-9501

Description: A thermally-initiated explosion in PBX-9501 (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) is observed in situ by flash x-ray imaging, and modeled with the LLNL multi-physics arbitrary-Lagrangian-Eulerian code ALE3D. The containment vessel deformation provides a useful estimate of the reaction pressure at the time of the explosion, which we calculate to be in the range 0.8-1.4 GPa. Closely-coupled ALE3D simulations of these experiments, utilizing the multi-phase convective burn model, provide detailed predictions of the reacted mass fraction and deflagration front acceleration. During the preinitiation heating phase of these experiments, the solid HMX portion of the PBX-9501 undergoes a {beta}-phase to {delta}-phase transition which damages the explosive and induces porosity. The multi-phase convective burn model results demonstrate that damaged particle size and pressure are critical for predicting reaction speed and violence. In the model, energetic parameters are taken from LLNL's thermochemical-kinetics code Cheetah and burn rate parameters from Son et al. (2000). Model predictions of an accelerating deflagration front are in qualitative agreement with the experimental images assuming a mode particle diameter in the range 300-400 {micro}m. There is uncertainty in the initial porosity caused by thermal damage of PBX-9501 and, thus, the effective surface area for burning. To better understand these structures, we employ x-ray computed tomography (XRCT) to examine the microstructure of PBX-9501 before and after thermal damage. Although lack of contrast between grains and binder prevents the determination of full grain size distribution in this material, there are many domains visible in thermally damaged PBX-9501 with diameters in the 300-400 {micro}m range.
Date: March 5, 2010
Creator: Tringe, J W; Glascoe, E A; Kercher, J R; Willey, T M; Springer, H K; Greenwood, D W et al.
Partner: UNT Libraries Government Documents Department