4 Matching Results

Search Results

Advanced search parameters have been applied.

Evaluations of glass vitrification techniques on iron ratio determinations

Description: High-level liquid waste at the Savannah River Site (SRS) will be processed into borosilicate glass at the Defense Waste Processing Facility (DWPF). Waste glass will be transported to a geologic repository for permanent disposal. Control of the redox properties of the melter feed is necessary for smooth operation of the melter. The Fe(II)/total Fe ratio in glass is a measure of the redox conditions in the melter. To simulate final glass product conditions, melter feed samples will be vitrified at the DWPF laboratory. A colorimetric method was used to determine the Fe(II)/total Fe ratio on vitrified melter feed samples. Because the crucible vitrification technique can have a large effect on the Fe(II)/total Fe ratio, crucible sealing during vitrification of the waste feed sample, and the type of heating applied vitrification, were the variables investigated for Fe(II)/total Fe ratio measurement effects. Various lid sealants were used for determining crucible sealing effects. Microwave and conventional heating were tested for glass vitrifications. Microwave heating and a nepheline gel sealant, to exclude oxygen from the alumina crucibles during vitrification, was adopted for use at the DWPF laboratory. This paper discusses microwave vitrification and crucible sealing techniques.
Date: January 1, 1991
Creator: Spencer, R.B.
Partner: UNT Libraries Government Documents Department

Evaluations of glass vitrification techniques on iron ratio determinations

Description: High-level liquid waste at the Savannah River Site (SRS) will be processed into borosilicate glass at the Defense Waste Processing Facility (DWPF). Waste glass will be transported to a geologic repository for permanent disposal. Control of the redox properties of the melter feed is necessary for smooth operation of the melter. The Fe(II)/total Fe ratio in glass is a measure of the redox conditions in the melter. To simulate final glass product conditions, melter feed samples will be vitrified at the DWPF laboratory. A colorimetric method was used to determine the Fe(II)/total Fe ratio on vitrified melter feed samples. Because the crucible vitrification technique can have a large effect on the Fe(II)/total Fe ratio, crucible sealing during vitrification of the waste feed sample, and the type of heating applied vitrification, were the variables investigated for Fe(II)/total Fe ratio measurement effects. Various lid sealants were used for determining crucible sealing effects. Microwave and conventional heating were tested for glass vitrifications. Microwave heating and a nepheline gel sealant, to exclude oxygen from the alumina crucibles during vitrification, was adopted for use at the DWPF laboratory. This paper discusses microwave vitrification and crucible sealing techniques.
Date: December 31, 1991
Creator: Spencer, R. B.
Partner: UNT Libraries Government Documents Department

Defense Waste Processing Facility prototypic analytical laboratory

Description: The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy.
Date: January 1, 1991
Creator: Policke, T.A.; Bryant, M.F. & Spencer, R.B.
Partner: UNT Libraries Government Documents Department

Defense Waste Processing Facility prototypic analytical laboratory

Description: The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R & D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R & D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy.
Date: December 31, 1991
Creator: Policke, T. A.; Bryant, M. F. & Spencer, R. B.
Partner: UNT Libraries Government Documents Department